Home
Class 12
MATHS
If (1+x)^(n)=C(0)+C(1)x+C(2)x^(2)+…..+C(...

If `(1+x)^(n)=C_(0)+C_(1)x+C_(2)x^(2)+…..+C_(n)x^(n)`, then the value of `sumsum_(0lerltslen)(r*s)C_(r)C_(s)` is :

A

`n^(2)[2^(2n-3)+1/2""^(2n-2)C_(n-1)]`

B

`[2^(2n-3)-1/2""^(2n-2)C_(n-1)]`

C

`n^(2)[2^(2n-3)-1/2""^(2n-2)C_(n-1)]`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the double summation: \[ \sum_{r=0}^{n} \sum_{s=0}^{n} r \cdot s \cdot C_r \cdot C_s \] where \( C_r \) and \( C_s \) are the binomial coefficients from the expansion of \( (1+x)^n \). ### Step 1: Understanding the Double Summation The double summation can be interpreted as the sum of products of binomial coefficients multiplied by the indices \( r \) and \( s \). ### Step 2: Rewrite the Double Summation We can rewrite the double summation as follows: \[ \sum_{r=0}^{n} r \cdot C_r \cdot \sum_{s=0}^{n} s \cdot C_s \] This allows us to separate the summation into two parts, one for \( r \) and one for \( s \). ### Step 3: Evaluate Each Summation We know from combinatorial identities that: \[ \sum_{r=0}^{n} r \cdot C_r = n \cdot 2^{n-1} \] This is derived from the fact that \( r \cdot C_r = n \cdot C_{r-1} \), and thus the sum can be rewritten using the binomial theorem. ### Step 4: Substitute Back into the Expression Now substituting back into our expression, we have: \[ \sum_{r=0}^{n} r \cdot C_r \cdot \sum_{s=0}^{n} s \cdot C_s = (n \cdot 2^{n-1}) \cdot (n \cdot 2^{n-1}) = n^2 \cdot 2^{2(n-1)} \] ### Step 5: Final Result Thus, the value of the double summation is: \[ \sum_{r=0}^{n} \sum_{s=0}^{n} r \cdot s \cdot C_r \cdot C_s = n^2 \cdot 2^{2(n-1)} \]
Promotional Banner