Home
Class 12
MATHS
If (1+x)^(n)=C(0)+C(1)x+C(2)x^(2)+….+C(n...

If `(1+x)^(n)=C_(0)+C_(1)x+C_(2)x^(2)+….+C_(n)x^(n)`, then the value of `sumsum_(0lerltslen)(C_(r)+C_(s))^(2)` is :

A

`(n+1)""^(2n)C_(n)`

B

`(n+1)""^(2n)C_(n)+2^(n)`

C

`(n+1)""^(2n)C_(n)`

D

`(n-1)""^(2n)C_(n)+2^(2n)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we need to evaluate the expression: \[ \sum_{0 \leq r \leq s \leq n} (C_r + C_s)^2 \] where \( C_r \) and \( C_s \) are the binomial coefficients from the expansion of \( (1+x)^n \). ### Step 1: Expand the Expression We start by expanding the square: \[ (C_r + C_s)^2 = C_r^2 + C_s^2 + 2C_r C_s \] ### Step 2: Set Up the Double Summation Now, we can express the double summation: \[ \sum_{0 \leq r \leq s \leq n} (C_r + C_s)^2 = \sum_{0 \leq r \leq s \leq n} C_r^2 + \sum_{0 \leq r \leq s \leq n} C_s^2 + 2 \sum_{0 \leq r \leq s \leq n} C_r C_s \] ### Step 3: Simplify the Summation Notice that the summation of \( C_r^2 \) and \( C_s^2 \) can be combined because they are symmetric: \[ \sum_{0 \leq r \leq s \leq n} C_r^2 = \sum_{0 \leq s \leq r \leq n} C_s^2 \] Thus, we can write: \[ \sum_{0 \leq r \leq s \leq n} C_r^2 + \sum_{0 \leq r \leq s \leq n} C_s^2 = 2 \sum_{0 \leq r \leq s \leq n} C_r^2 \] ### Step 4: Calculate \( \sum_{0 \leq r \leq n} C_r^2 \) Using the identity for the sum of squares of binomial coefficients: \[ \sum_{r=0}^{n} C_r^2 = C_{2n} \] This means: \[ \sum_{0 \leq r \leq s \leq n} C_r^2 = \frac{1}{2} \sum_{r=0}^{n} C_r^2 = \frac{1}{2} C_{2n} \] ### Step 5: Evaluate \( \sum_{0 \leq r \leq s \leq n} C_r C_s \) For the term \( 2 \sum_{0 \leq r \leq s \leq n} C_r C_s \), we can express it as: \[ \sum_{0 \leq r, s \leq n} C_r C_s = \left( \sum_{r=0}^{n} C_r \right)^2 = (2^n)^2 = 4^n \] However, since we only want the case where \( r \leq s \), we have: \[ \sum_{0 \leq r \leq s \leq n} C_r C_s = \frac{1}{2} \sum_{0 \leq r, s \leq n} C_r C_s = \frac{1}{2} \cdot 4^n \] ### Step 6: Combine All Parts Now we can combine all parts: \[ \sum_{0 \leq r \leq s \leq n} (C_r + C_s)^2 = 2 \cdot \frac{1}{2} C_{2n} + 2 \cdot \frac{1}{2} \cdot 4^n \] This simplifies to: \[ C_{2n} + 4^n \] ### Final Result Thus, the final value of the double summation is: \[ \sum_{0 \leq r \leq s \leq n} (C_r + C_s)^2 = C_{2n} + 4^n \]
Promotional Banner