Home
Class 12
MATHS
Let x=(5+2sqrt6)^(n),ninN, then find the...

Let `x=(5+2sqrt6)^(n),ninN`, then find the value of `x-x^(2)+x[x]`, where [.] denotes greatest integer function.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( x - x^2 + x \lfloor x \rfloor \), where \( x = (5 + 2\sqrt{6})^n \) and \( n \) is a natural number. Here, \( \lfloor x \rfloor \) denotes the greatest integer function. ### Step-by-Step Solution: 1. **Define \( x \) and \( y \)**: Let \( x = (5 + 2\sqrt{6})^n \) and \( y = (5 - 2\sqrt{6})^n \). Note that \( 5 - 2\sqrt{6} \) is a small positive number less than 1, so \( y \) will be a very small positive number as \( n \) increases. 2. **Find \( x + y \)**: We can express \( x + y \): \[ x + y = (5 + 2\sqrt{6})^n + (5 - 2\sqrt{6})^n \] This sum will be an integer because it can be shown that the terms involving \( \sqrt{6} \) cancel out. 3. **Find \( \lfloor x \rfloor \)**: Since \( y \) is very small, we can express \( x \) in terms of its integer and fractional parts: \[ x = \lfloor x \rfloor + \{x\} \] where \( \{x\} = x - \lfloor x \rfloor \) is the fractional part of \( x \). 4. **Relate \( y \) to \( \{x\} \)**: We can express \( y \) as: \[ y = 1 - \{x\} \] because \( x + y \) is an integer, and since \( y \) is small, \( \{x\} + y = 1 \). 5. **Calculate \( x - x^2 + x \lfloor x \rfloor \)**: We want to compute: \[ x - x^2 + x \lfloor x \rfloor \] Substitute \( \lfloor x \rfloor = x - \{x\} \): \[ x - x^2 + x (x - \{x\}) = x - x^2 + x^2 - x\{x\} = x - x\{x\} \] 6. **Simplify**: Since \( \{x\} = 1 - y \): \[ x - x\{x\} = x - x(1 - y) = x - x + xy = xy \] 7. **Substituting \( y \)**: We know \( xy = (5 + 2\sqrt{6})^n (5 - 2\sqrt{6})^n = ((5 + 2\sqrt{6})(5 - 2\sqrt{6}))^n = (25 - 24)^n = 1^n = 1 \). 8. **Final Result**: Thus, we find: \[ x - x^2 + x \lfloor x \rfloor = 1 \] ### Conclusion: The value of \( x - x^2 + x \lfloor x \rfloor \) is \( \boxed{1} \).
Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=[2x], where [.] denotes the greatest integer function,then

If x=(2+sqrt(3))^(n) ,then the value of x-x^(2)+x[x] where [.] denotes the greatest integer function, is equal to

If x=(2+sqrt(3))^n ,then the value of x-x^(2)+x[x] where [.] denotes the greatest integer function, is equal to

Let f(x)=(-1)^([x]) where [.] denotes the greatest integer function),then

Let f(x)=[x]+sqrt(x-[x]), where [.] denotes the greatest integer function.Then

The period of 6x-[6x] is (where [ ] denotes the greatest integer function)

f(x)=1/sqrt([x]^(2)-[x]-6) , where [*] denotes the greatest integer function.

The function,f(x)=[|x|]-|[x]| where [] denotes greatest integer function:

The value of int_(0)^(2)[x+[x+[x]]] dx (where, [.] denotes the greatest integer function )is equal to

Let f(x) = [x]^(2) + [x+1] - 3 , where [.] denotes the greatest integer function. Then