Home
Class 12
MATHS
If (n-1)Cr=(k^2-3)nC(r+1),then k belong...

If `(n-1)C_r=(k^2-3)nC_(r+1)`,then k belong to

A

`(oo, -2]`

B

`[2, oo)`

C

`[-sqrt3, sqrt3]`

D

`(sqrt3, 2]`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

"^(n-1)C_r=(k^2-8)^(n)C_(r+1) then k is

If C((n-1),r)=(k^(2)-3)C(n,(r+1)) then range of k is

If y^r=(n !^(n+r-1)C_(r-1))/(r^n),w h e r en=k r(k is contstant), then ("lim")_(rvecoo)y is equal to (a)(k-1)(log)_e(1+k)-k (b)(k+1)(log)_e(1-k)+k (c)(k+1)(log)_e(1-k)-k (d)(k-1)(log)_e(1-k)+k

If sum_(r=1)^(10)r(r-1)10C_(r)=k.2^(9), then k is equal to- -1

The value of sum_(r=0)^(n-1)(nC_(r))/(nC_(r)+^(n)C_(r+1)) is eqaul to

if nP_(r)=nP_(r+1) and nC_(r)=nC_(r-1) then value of (n+r) is equal to