Home
Class 12
MATHS
If C(r) stands for ""^(n)C(r), then the ...

If `C_(r)` stands for `""^(n)C_(r)`, then the sum of the series `(2((n)/(2))!((n)/(2))!)/(n!)[C_(0)^(2)-2C_(1)^(2)+3C_(2)^(2)-...+(-1)^(n)(n+1)C_(n)^(2)]`, where n is an even positive integers, is:

A

`(-1)^(n//2)(n+2)`

B

`(-1)^(n)(n+1)`

C

`(-1)^(n//2)(n+1)`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we will follow the steps outlined in the video transcript and derive the solution systematically. ### Step-by-Step Solution: 1. **Understanding the Series**: We need to evaluate the series: \[ C(0)^2 - 2C(1)^2 + 3C(2)^2 - \ldots + (-1)^n(n+1)C(n)^2 \] where \( C(r) = \binom{n}{r} \). 2. **Using Binomial Expansion**: We start with the binomial expansion of \( (1+x)^n \): \[ (1+x)^n = C(0) + C(1)x + C(2)x^2 + \ldots + C(n)x^n \] 3. **Multiplying by \( x \)**: Multiply both sides by \( x \): \[ x(1+x)^n = C(0)x + C(1)x^2 + C(2)x^3 + \ldots + C(n)x^{n+1} \] 4. **Differentiating**: Differentiate both sides with respect to \( x \): \[ n(1+x)^{n-1} + (1+x)^n = C(0) + 2C(1)x + 3C(2)x^2 + \ldots + (n+1)C(n)x^n \] 5. **Rearranging**: Rearranging gives us: \[ n(1+x)^{n-1} + (1+x)^n = C(0) + 2C(1)x + 3C(2)x^2 + \ldots + (n+1)C(n)x^n \] 6. **Introducing a New Term**: Introduce \( 1 - \frac{1}{x} \): \[ C(0) - \frac{C(1)}{x} + \frac{C(2)}{x^2} - \ldots + \frac{C(n)}{x^n} \] 7. **Combining Terms**: Multiply the two expressions obtained from differentiation and rearranging: \[ (1+x)^{n-1}(x - 1) = x \cdot (n+1)C(n)x^n \] 8. **Finding the Independent Term**: We need to find the term independent of \( x \) in the resulting expression. 9. **Evaluating the Coefficients**: The coefficients will give us the required sums: \[ \sum_{r=0}^{n} (-1)^r (r+1)C(r)^2 \] 10. **Final Expression**: After simplifying, we find: \[ \frac{2}{nC(n/2)} \left( (-1)^{n/2}(n+2) \right) \] 11. **Final Answer**: Thus, the sum of the series is: \[ \boxed{(-1)^{n/2}(n+2)} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If C_(r) stands for nC_(r), then the sum of the series (2((n)/(2))!((n)/(2))!)/(n!)[C_(0)^(2)-2C_(1)^(2)+3C_(2)^(2)-......+(-1)^(n)(n+1)C_(n)^(2)], where n is an even positive integer,is

The sum of the series 1+(1)/(2) ""^(n) C_1 + (1)/(3) ""^(n) C_(2) + ….+ (1)/(n+1) ""^(n) C_(n) is equal to

The sum of the series sum_(r=0) ^(n) ""^(2n)C_(r), is

Prove that C_(0)2^(2)C_(1)+3C_(2)4^(2)C_(3)+...+(-1)^(n)(n+1)^(2)C_(n)=0 where C_(r)=nC_(r)

1+^(n)C_(1)+^(n+1)C_(2)+^(n+2)C_(3)+......+^(n+r-1)C_(r)