Home
Class 12
MATHS
If (x1-x2)^2+(y1-y2)^2 =a^2, (x2-x3)^2+(...

If `(x_1-x_2)^2+(y_1-y_2)^2 =a^2`, `(x_2-x_3)^2+(y_2-y_3)^2=b^2`, `(x_3-x_1)^2 +(y_3-y_1)^2=c^2` and `2s =a +b+c` then `1/4 |(x_1,y_1,1),(x_2,y_2,1), (x_3,y_3,1)|^2` is equal to

A

`s(s-a)^(2)`

B

`(s-b)(s-c)^(2)`

C

`s(s-a)(s-b)(s-c)`

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

If (x_1-x_2)^2+(y_1-y_2)^2=a^2,(x_2-x_3)^2+(y_2-y_3)^2=b^2 and (x_3-x_1)^2+(y_3-y_1)^2=c^2 then prove that 4|{:(x_1,y_1,1),(x_2,y_2,1),(x_3,y_3,1):}|= (a+b+c)(b+c-a)(c+a-b)(a+b-c)

If (x_1-x_2)^2+(y_1-y_2)^2=a^2, (x_2-x_3)^2+(y_2-y_3)^2=b^2, (x_3-x_1)^2+(y_3-y_1)^2=c^2, and k|[x_1,y_1, 1],[x_2,y_2, 1],[x_3,y_3, 1]|=(a+b+c)(b+c-b)(c+a-b)xx(a+b-c) , then the value of k is 1 b. 2 c. 4 d. none of these

If (x_(1)-x_(2))^(2)+(y_(1)-y_(2))^(2)=a^(2)(x_(2)-x_(3))^(2)+(y_(2)-y_(3))^(2)=b^(2)(x_(3)-x_(1))^(2)+(y_(3)-y_(1))^(2)=c^(2) and 2s=a+b+c then (1)/(4)det[[x_(2),y_(2),1x_(3),y_(3),1]]^(2)

if (x_(1),x_(2))^(2)+(y_(1)-y_(2))^(2)=a^(2), (x_(2)-x_(3))^(2)+(y_(2)-y_(3))^(2)=b^(2) (x_(3)-x_(1))^(2)+(y_(3)-y_(1))^(2)=c^(2). where a,b,c are positive then prove that 4 |{:(x_(1),,y_(1),,1),(x_(2) ,,y_(2),,1),( x_(3),, y_(3),,1):}| = (a+b+c) (b+c-a) (c+a-b)(a+b-c)

If (x_(1)-x_(2))^(2)+(y_(1)-y_(2))^(2)=144,(x_(2)-x_(3))^(2)+(y_(2)-y_(3))^(2)=25 and (x_(3)-x_(1))^(2)+(y_(3)-y_(1))^(2)=169, then the value of det[[x_(1),y_(1),1x_(2),y_(2),1x_(3),y_(3),1]]^(2) is 30(b)30^(2)(c)60(d)60^(2)

An equilateral triangle has each side to a. If the coordinates of its vertices are (x_(1), y_(1)), (x_(2), y_(2)) and (x_(3), y_(3)) then the square of the determinat |(x_(1),y_(1),1),(x_(2),y_(2),1),(x_(3),y_(3),1)| equals

If the points (x_1,y_1),(x_2,y_2)and(x_3,y_3) are collinear, then the rank of the matrix {:[(x_1,y_1,1),(x_2,y_2,1),(x_3,y_3,1)]:} will always be less than