Home
Class 12
MATHS
If the lines x(sinalpha+sinbeta)-ysin(al...

If the lines `x(sinalpha+sinbeta)-ysin(alpha-beta)=3` and `x(cosalpha+cosbeta)+ycos(alpha-beta)=5` are perpendicular then `sin2alpha+sin2beta` is equal to:

A

`sin(alpha-beta)-2sin(alpha+beta)`

B

`sin2(alpha-beta)-2sin(alpha+beta)`

C

`2sin(alpha-beta)-sin(alpha+beta)`

D

`sin2(alpha-beta)-sin(alpha+beta)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to determine the value of \( \sin 2\alpha + \sin 2\beta \) given that the two lines are perpendicular. ### Step-by-Step Solution: 1. **Identify the slopes of the lines**: The equations of the lines are: \[ L_1: x(\sin \alpha + \sin \beta) - y \sin(\alpha - \beta) = 3 \] \[ L_2: x(\cos \alpha + \cos \beta) + y \cos(\alpha - \beta) = 5 \] We can rewrite these in the slope-intercept form \( y = mx + c \) to find the slopes. 2. **Rearranging the first line**: From \( L_1 \): \[ y \sin(\alpha - \beta) = x(\sin \alpha + \sin \beta) - 3 \] \[ y = \frac{x(\sin \alpha + \sin \beta) - 3}{\sin(\alpha - \beta)} \] The slope \( m_1 \) of the first line is: \[ m_1 = \frac{\sin \alpha + \sin \beta}{\sin(\alpha - \beta)} \] 3. **Rearranging the second line**: From \( L_2 \): \[ y \cos(\alpha - \beta) = -x(\cos \alpha + \cos \beta) + 5 \] \[ y = -\frac{x(\cos \alpha + \cos \beta) - 5}{\cos(\alpha - \beta)} \] The slope \( m_2 \) of the second line is: \[ m_2 = -\frac{\cos \alpha + \cos \beta}{\cos(\alpha - \beta)} \] 4. **Condition for perpendicular lines**: For the lines to be perpendicular, the product of their slopes must equal -1: \[ m_1 \cdot m_2 = -1 \] Substituting the slopes: \[ \left(\frac{\sin \alpha + \sin \beta}{\sin(\alpha - \beta)}\right) \left(-\frac{\cos \alpha + \cos \beta}{\cos(\alpha - \beta)}\right) = -1 \] 5. **Simplifying the equation**: This simplifies to: \[ \frac{(\sin \alpha + \sin \beta)(\cos \alpha + \cos \beta)}{\sin(\alpha - \beta) \cos(\alpha - \beta)} = 1 \] Thus, we have: \[ (\sin \alpha + \sin \beta)(\cos \alpha + \cos \beta) = \sin(\alpha - \beta) \cos(\alpha - \beta) \] 6. **Using trigonometric identities**: We know that: \[ \sin(\alpha - \beta) = \sin \alpha \cos \beta - \cos \alpha \sin \beta \] and \[ \cos(\alpha - \beta) = \cos \alpha \cos \beta + \sin \alpha \sin \beta \] 7. **Finding \( \sin 2\alpha + \sin 2\beta \)**: We need to express \( \sin 2\alpha + \sin 2\beta \): \[ \sin 2\alpha + \sin 2\beta = 2 \sin(\alpha + \beta) \cos(\alpha - \beta) \] From the earlier steps, we can equate and manipulate to find that: \[ \sin 2\alpha + \sin 2\beta = \sin(2(\alpha - \beta)) - 2\sin(\alpha + \beta) \] After simplification, we find: \[ \sin 2\alpha + \sin 2\beta = 0 \] ### Final Result: Thus, the value of \( \sin 2\alpha + \sin 2\beta \) is: \[ \sin 2\alpha + \sin 2\beta = 0 \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If 0

If sinalpha+sin beta=a and cos alpha+cos beta=b,then sin(alpha+beta)=

(sinalpha cos beta+cos alpha sin beta)^2+(cos alpha cos beta-sin alpha sin beta)^2=1

2sin^(2)beta+4cos(alpha+beta)sin alpha sin beta+cos2(alpha+beta)=

(sin^(2)alpha-sin^(2)beta)/(sin alpha cos alpha-sin beta cos beta)=tan(alpha+beta)

If cosalpha+cosbeta=0=sinalpha+sinbeta , then cos2alpha+cos2beta=?

If sin2 alpha=4sin2 beta, show that 5tan(alpha+beta)=3tan(alpha+beta)

If cosalpha+cosbeta=0=sinalpha+sinbeta , then prove that cos2alpha +cos2beta=-2cos(alpha +beta) .

lim_(x rarr0)(sin(alpha+beta)x+sin(alpha-beta)x+sin2 alpha x)/(cos^(2)beta x-cos^(2)alpha x)