Home
Class 12
MATHS
the points (alpha,beta) , (gamma , delta...

the points `(alpha,beta) , (gamma , delta) ,(alpha , delta) , (gamma , beta) ` are different real numbers are:

A

Collinear

B

Vertices of a square

C

Vertices of a rhombus

D

Concyclic

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

If cos (alpha + beta) sin (gamma + delta) = cos (alpha - beta) sin (gamma - delta) then:

designated by alpha, beta, gamma and delta are in order:

Let sin^(-1)alpha+sin^(-1)beta+sin^(-1)gamma=pi and alpha, beta, gamma are non zero real numbers such that (alpha+beta+gamma)(alpha+beta-gamma)=3alphabeta then value of gamma

The minimum value of the expression sin alpha+sin beta+sin gamma, where alpha,beta,gamma are real numbers satisfying alpha+beta+gamma=pi is

If alpha, beta, gamma and delta are the roots of the equation x ^(4) -bx -3 =0, then an equation whose roots are (alpha +beta+gamma)/(delta^(2)), (alpha +beta+delta)/(gamma^(2)), (alpha +delta+gamma)/(beta^(2)), and (delta +beta+gamma)/(alpha^(2)), is:

If cos(alpha+beta)sin(gamma+delta)=cos(alpha-beta)sin(gamma-delta) then the value of cot alpha cot beta cot gamma, is

If cos(alpha+beta)sin(gamma +delta) = cos(alpha-beta)sin(gamma-delta) , then the value of cotalpha*cotbeta.cotgamma is :

If cos(alpha+beta)*sin(gamma+delta)=cos(alpha-beta)*sin(gamma-delta) prove that cot alpha cot beta cot gamma=cot delta

If cos(alpha+beta)sin(gamma+delta)=cos(alpha-beta)sin(gamma-delta), prove that cot alpha cot beta cot gamma=cot delta