Home
Class 12
MATHS
If p(1),p(2),p(3) be the length of per...

If `p_(1),p_(2),p_(3)` be the length of perpendiculars from the points `(m^(2),2m),(mm',m+m')` and `(m^('2),2m')` respectively on the line `xcosalpha+ysinalpha+(sin^(2)alpha)/(cosalpha)=0` then `p_(1),p_(2),p_(3)` are in:

A

A.P

B

G.P

C

H.P

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the lengths of the perpendiculars from the given points to the specified line and determine the relationship between these lengths. Let's break it down step by step. ### Step 1: Identify the line and points The line is given by the equation: \[ x \cos \alpha + y \sin \alpha + \frac{\sin^2 \alpha}{\cos \alpha} = 0 \] The points from which we need to find the perpendicular distances are: 1. \( P_1 = (m^2, 2m) \) 2. \( P_2 = (mm', m + m') \) 3. \( P_3 = (m'^2, 2m') \) ### Step 2: Use the formula for the length of the perpendicular The length of the perpendicular \( p \) from a point \( (x_1, y_1) \) to the line \( ax + by + c = 0 \) is given by: \[ p = \frac{|ax_1 + by_1 + c|}{\sqrt{a^2 + b^2}} \] For our line, we have: - \( a = \cos \alpha \) - \( b = \sin \alpha \) - \( c = \frac{\sin^2 \alpha}{\cos \alpha} \) ### Step 3: Calculate \( P_1 \) For the point \( (m^2, 2m) \): \[ P_1 = \frac{|\cos \alpha \cdot m^2 + \sin \alpha \cdot 2m + \frac{\sin^2 \alpha}{\cos \alpha}|}{\sqrt{\cos^2 \alpha + \sin^2 \alpha}} \] Since \( \sqrt{\cos^2 \alpha + \sin^2 \alpha} = 1 \): \[ P_1 = |\cos \alpha \cdot m^2 + 2m \sin \alpha + \frac{\sin^2 \alpha}{\cos \alpha}| \] ### Step 4: Simplify \( P_1 \) Taking the common denominator: \[ P_1 = \left| \frac{m^2 \cos^2 \alpha + 2m \sin \alpha \cos \alpha + \sin^2 \alpha}{\cos \alpha} \right| \] This can be rewritten as: \[ P_1 = \frac{|(m \cos \alpha + \sin \alpha)^2|}{\cos \alpha} \] ### Step 5: Calculate \( P_2 \) For the point \( (mm', m + m') \): \[ P_2 = \frac{|\cos \alpha \cdot mm' + \sin \alpha \cdot (m + m') + \frac{\sin^2 \alpha}{\cos \alpha}|}{1} \] \[ P_2 = |\cos \alpha \cdot mm' + (m + m') \sin \alpha + \frac{\sin^2 \alpha}{\cos \alpha}| \] Taking the common denominator: \[ P_2 = \left| \frac{mm' \cos^2 \alpha + (m + m') \sin \alpha \cos \alpha + \sin^2 \alpha}{\cos \alpha} \right| \] This can be rewritten as: \[ P_2 = \frac{|(m \cos \alpha + \sin \alpha)(m' \cos \alpha + \sin \alpha)|}{\cos \alpha} \] ### Step 6: Calculate \( P_3 \) For the point \( (m'^2, 2m') \): \[ P_3 = \frac{|\cos \alpha \cdot m'^2 + 2m' \sin \alpha + \frac{\sin^2 \alpha}{\cos \alpha}|}{1} \] Following the same steps as for \( P_1 \): \[ P_3 = \frac{|(m' \cos \alpha + \sin \alpha)^2|}{\cos \alpha} \] ### Step 7: Establish the relationship between \( P_1, P_2, P_3 \) From the expressions derived: - \( P_1 = \frac{|(m \cos \alpha + \sin \alpha)^2|}{\cos \alpha} \) - \( P_2 = \frac{|(m \cos \alpha + \sin \alpha)(m' \cos \alpha + \sin \alpha)|}{\cos \alpha} \) - \( P_3 = \frac{|(m' \cos \alpha + \sin \alpha)^2|}{\cos \alpha} \) ### Step 8: Conclusion We can see that: \[ P_1 \cdot P_3 = P_2^2 \] This indicates that \( P_1, P_2, P_3 \) are in geometric progression (GP).
Promotional Banner