Home
Class 12
MATHS
Equation of a straight line passing thro...

Equation of a straight line passing through the point of intersection of `x - y + 1 = 0 and 3x + y - 5 = 0` are perpendicular to one of them is

Text Solution

Verified by Experts

The correct Answer is:
4
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the equation of a straight line which passes through the point of intersection of 3x + 4y – 1 = 0 and 2x – 5y + 7 = 0 and which is perpendicular to 4x – 2y + 7 = 0 .

Find the equation of the straight line passing through the point of intersection of the lines 5x-6y-1=0 and 3x+2y+5=0 and perpendicular to the line 3x-5y+11=0

Find the equation of a straight line passing through the point of intersection of the lines : 3x+y-9=0 and 4x+3y-7=0 and perpendicular to the line 5x-4y+1=0

Find the equation of a straight line passing through the point of intersection of x+2y+3=0\ a n d\ 3x+4y+7=0 and perpendicular to the straight line x-y+9=0.

Find the equation of the straight line which passes through the point of intersection of lines 3x-4y-7=0 and 12x-5y-13=0 and is perpendicular to the line 2x-3y+5=0

The equation of a line passing through the point of intersection of lines x+2y +3 =0 and 3x+4y +7=0 and perpendicular to the line x-y+9 =0 is

Find the equation to the line passing through the point of intersection of y-x-1=0 and 2x-y+1=0 and perpendicular to 3x+2y=0