Home
Class 12
MATHS
A straight line through origin O meets ...

A straight line through origin O meets the lines `3y=10-4x` and `8x+6y+5=0` at point A and B respectively. Then , O divides the Segment AB in the ratio.

A

`2:3`

B

`1:2`

C

`4:1`

D

`3:4`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

A straight line through origin O meets the lines 3y=10-4x and 8x+6y+5=0 at point A and B respectively. Then , O divides the degment AB in the ratio.

A straight line through the origin O meets the parallel lines 4x+2y=9 and 2x+y+6=0 at points P and Q respectively. Then the point O divides the segement P Q in the ratio (1) 1:2 (2) 3:4 (3) 2:1 (4) 4:3

A straight line through the origin 'O' meets the parallel lines 4x+2y=9 and 2x+y=-6 at points P and Q respectively.Then the point 'divides the segment PQ in the ratio

A straight line through the origin o meets the parallel lines 4x+2y= 9 and 2x +y+ 6=0 points P and Q respectively. Then the point o divides the segment PQ in the ratio: : (A) 1:2 (B) 3:2 (C) 2:1 D) 4:3

A straight line through the point A(1,1) meets the parallel lines 4x+2y=9&2x+y+6=0 at points P and Q respectively.Then the point A divides the segment PQ in the ratio:

A line through the point P(2,-3) meets the lines x-2y+7=0 and x+3y-3=0 at the points A and B respectively.If P divides AB externally in the ratio 3:2 then find the equation of the line AB.

A straight line through the point A(-2, -3) cuts the line x+3y=9 and x+y+1=0 at B and C respectively. Find the equation of the line if AB.AC = 20 .

A straight line through the point (2, 2) intersects the lines sqrt(3)x+y=0 and sqrt(3)x-y=0 at the points A and B. The equation of the line AB so that DeltaOAB is equilateral, is: