Home
Class 12
MATHS
The vertices of a triangle are [at(1)t...

The vertices of a triangle are
`[at_(1)t_(2),a(t_(1)+t_(2))]`,`[at_(2)t_(3),a(t_(2)+t_(3))]`, `[at_(3)t_(1),a(t_(3)+t_(1))]`.
Find the orthocentre of the triangle.

Text Solution

Verified by Experts

The correct Answer is:
`[-a,a(t_(1)+t_(2)+t_(3)+t_(1)t_(2)t_(3))]`
Promotional Banner

Similar Questions

Explore conceptually related problems

The vertices of a triangle are [a t_1t_2,a(t_1 +t_2)], [a t_2t_3,a(t_2 +t_3)], [a t_3t_1,a(t_3 +t_1)] Then the orthocenter of the triangle is (a) (-a, a(t_1+t_2+t_3)-at_1t_2t_3) (b) (-a, a(t_1+t_2+t_3)+at_1t_2t_3) (c) (a, a(t_1+t_2+t_3)+at_1t_2t_3) (d) (a, a(t_1+t_2+t_3)-at_1t_2t_3)

Find the area of that triangle whose vertices are (at_(1)^(2),2at_(1)),(at_(2)^(2),2at_(2))and(at_(3)^(2),2at_(3)).

Find the are of triangle whose vertex are: (at_(1),(a)/(t_(1)))(at_(2),(a)/(t_(2)))(at_(3),(a)/(t_(3)))

If O is the orthocentre of triangle ABC whose vertices are at A(at_(1)^(2),2at_(1), B (at_(2)^(2),2at_(2)) and C (at_(3)^(2), 2at_(3)) then the coordinates of the orthocentreof Delta O'BC are

Find the coordinates o the vertices of a triangle,the equations of whose sides are: y(t_(1)+t_(2))=2x+2at_(1)at_(2),y(t_(2)+t_(3))=2x+2at_(2)t_(3) and ,y(t_(3)+t_(1))=2x+2at_(1)t_(3)

Prove that the area of the triangle whose vertices are : (at_(1)^(2),2at_(1)) , (at_(2)^(2),2at_(2)) , (at_(3)^(2),2at_(3)) is a^(2)(t_(1)-t_(2))(t_(2)-t_(3))(t_(3)-t_(1)) .

Calculate a, T_(1), T_(2), T_(1)' & T_(2)' .