Home
Class 12
MATHS
At the point of intersection of the curv...

At the point of intersection of the curves `y^2=4ax" and "xy=c^2`, the tangents to the two curves make angles `alpha" and "beta` respectively with x-axis. Then `tan alpha cot beta=`

A

`-1`

B

`-2`

C

`-(1)/(2)`

D

`-(1)/(4)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \tan \alpha \cot \beta \) at the point of intersection of the curves \( y^2 = 4ax \) (a parabola) and \( xy = c^2 \) (a rectangular hyperbola). Here are the step-by-step calculations: ### Step 1: Find the point of intersection We have two equations: 1. \( y^2 = 4ax \) (Equation of the parabola) 2. \( xy = c^2 \) (Equation of the hyperbola) From the hyperbola's equation, we can express \( y \) in terms of \( x \): \[ y = \frac{c^2}{x} \] Substituting this into the parabola's equation: \[ \left(\frac{c^2}{x}\right)^2 = 4ax \] This simplifies to: \[ \frac{c^4}{x^2} = 4ax \] Multiplying both sides by \( x^2 \): \[ c^4 = 4ax^3 \] Thus, we can express \( x \): \[ x^3 = \frac{c^4}{4a} \quad \Rightarrow \quad x = \left(\frac{c^4}{4a}\right)^{\frac{1}{3}} \] ### Step 2: Find the corresponding \( y \) coordinate Substituting \( x \) back into the equation for \( y \): \[ y = \frac{c^2}{x} = \frac{c^2}{\left(\frac{c^4}{4a}\right)^{\frac{1}{3}}} = c^2 \cdot \left(\frac{4a}{c^4}\right)^{\frac{1}{3}} = \frac{4^{\frac{1}{3}} a^{\frac{1}{3}} c^{\frac{2}{3}}}{c^{\frac{4}{3}}} = \frac{4^{\frac{1}{3}} a^{\frac{1}{3}}}{c^{\frac{2}{3}}} \] ### Step 3: Find the slopes of the tangents **For the parabola \( y^2 = 4ax \)**: Differentiating implicitly: \[ 2y \frac{dy}{dx} = 4a \quad \Rightarrow \quad \frac{dy}{dx} = \frac{2a}{y} \] At the point \( P \left( \left(\frac{c^4}{4a}\right)^{\frac{1}{3}}, \frac{4^{\frac{1}{3}} a^{\frac{1}{3}}}{c^{\frac{2}{3}}} \right) \): \[ \frac{dy}{dx} = \frac{2a}{\frac{4^{\frac{1}{3}} a^{\frac{1}{3}}}{c^{\frac{2}{3}}}} = \frac{2a c^{\frac{2}{3}}}{4^{\frac{1}{3}} a^{\frac{1}{3}}} = \frac{2c^{\frac{2}{3}}}{4^{\frac{1}{3}} a^{\frac{2}{3}}} \] Thus, \( \tan \alpha = \frac{2c^{\frac{2}{3}}}{4^{\frac{1}{3}} a^{\frac{2}{3}}} \). **For the hyperbola \( xy = c^2 \)**: Differentiating implicitly: \[ y + x \frac{dy}{dx} = 0 \quad \Rightarrow \quad \frac{dy}{dx} = -\frac{y}{x} \] At point \( P \): \[ \frac{dy}{dx} = -\frac{\frac{4^{\frac{1}{3}} a^{\frac{1}{3}}}{c^{\frac{2}{3}}}}{\left(\frac{c^4}{4a}\right)^{\frac{1}{3}}} = -\frac{4^{\frac{1}{3}} a^{\frac{1}{3}}}{c^{\frac{2}{3}}} \cdot \left(\frac{4a}{c^4}\right)^{\frac{1}{3}} = -\frac{4^{\frac{1}{3}} a^{\frac{1}{3}} \cdot 4^{\frac{1}{3}} a^{\frac{1}{3}}}{c^{\frac{2}{3}} c^{\frac{4}{3}}} = -\frac{4^{\frac{2}{3}} a^{\frac{2}{3}}}{c^{2}} \] Thus, \( \tan \beta = -\frac{4^{\frac{2}{3}} a^{\frac{2}{3}}}{c^{2}} \). ### Step 4: Calculate \( \tan \alpha \cot \beta \) Now we can find \( \tan \alpha \cot \beta \): \[ \cot \beta = -\frac{c^2}{4^{\frac{2}{3}} a^{\frac{2}{3}}} \] Thus: \[ \tan \alpha \cot \beta = \left(\frac{2c^{\frac{2}{3}}}{4^{\frac{1}{3}} a^{\frac{2}{3}}}\right) \left(-\frac{c^2}{4^{\frac{2}{3}} a^{\frac{2}{3}}}\right) \] This simplifies to: \[ = -\frac{2c^{\frac{8}{3}}}{4^{1} a^{\frac{4}{3}}} = -\frac{2c^{\frac{8}{3}}}{16 a^{\frac{4}{3}}} = -\frac{c^{\frac{8}{3}}}{8 a^{\frac{4}{3}}} \] ### Final Result Thus, the final answer is: \[ \tan \alpha \cot \beta = -\frac{1}{2} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If the two lines ax^(2)+2hxy+by^(2)=a make angles alpha and beta with X-axis,then : tan(alpha+beta)=

Find the locus of the point through which pass three normals to the parabola y^2 = 4ax such that two of them make angles alpha and beta respectively with the axis so that tan alpha tan beta = 2 .

The locus of the point through which pass three normals to the parabola y^(2)=4ax, such that two of them make angles alpha& beta respectively with the axis &tan alpha*tan beta=2 is (a>0)

If the normals to the parabola y^(2)=4ax at P meets the curve again at Q and if PQ and the normal at Q make angle alpha and beta respectively,with the x-axis,then tan alpha(tan alpha+tan beta) has the value equal to 0 (b) -2( c) -(1)/(2)(d)-1

If the two lines 2x^(2)-3xy+y^(2)=0 makes anlges alpha and beta with X-axis then : csc^(2) alpha+csc^(2)beta=

If the lines represented by the equation 6x^(2)+41xy-7y^(2)=0 make angles alpha and beta with X-axis, then tan alpha.tan beta=

If the lines represented by ax^(2)-bxy-y^(2)=0 makes angle alpha and beta with X-axis, then tan(alpha+beta)=

If the lines represented by the equation ax^(2)-bxy-y^(2)=0 make angles alpha and beta with the X-axis, then tan(alpha+beta)=

If the lines represented by x^(2)-4xy+y^(2)=0 makes angle alpha and beta with X-axis, then tan^(2)alpha+tan^(2)beta=