Home
Class 12
MATHS
If the line y=mx+c is a normal to the pa...

If the line `y=mx+c` is a normal to the parabola `y^2=4ax`, then c is

A

`am(m^2+2)`

B

`am^2(m+2)`

C

`-am(m^2+2)`

D

`-am^2(m+2)`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

The line lx+my+n=0 is a normal to the parabola y^(2)=4ax if

If the line px+qy=1 is a tangent to the parabola y^(2)=4ax. then

The line 1x+my+n=0 is a normal to the parabola y^(2)=4ax if :

If the line y=mx+1 is tangent to the parabola y^(2)=4x, then find the value of m .

Statement 1: The line ax+by+c=0 is a normal to the parabola y^(2)=4ax. Then the equation of the tangent at the foot of this normal is y=((b)/(a))x+((a^(2))/(b)). Statement 2: The equation of normal at any point P(at^(2),2at) to the parabola y^(2)= 4ax is y=-tx+2at+at^(3)

If the line px + qy =1 is a tangent to the parabola y^(2) =4ax, then

If the line y=mx+c touches the parabola y^(2)=4a(x+a) , then

The line sqrt(2y)-2x+8a=0 is a normal to the parabola y^(2)=4ax at P ,then P=