Home
Class 12
MATHS
CP and CD are conjugate semi-diameters o...

CP and CD are conjugate semi-diameters of the ellipse `x^(2)/a^(2) + y^(2)/b^(2) = 1`, The locus of the mid-point of PD, is

A

`(x^2)/(a^2)+(y^2)/(b^2)=(1)/(2)`

B

`(x^2)/(a^2)+(y^2)/(b^2)=1`

C

`(x^2)/(a^2)+(y^2)/(b^2)=(3)/(2)`

D

`(x^2)/(a^2)+(y^2)/(b^2)=2`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

If CP and CD are semi-conjugate diameters of the ellipse x^(2)/a^(2) + y^(2)/b^(2) = 1 , then CP^(2) + CD^(2) =

The locus of the point of intersection of tangents at the end-points of conjugate diameters of the ellipse x^(2)/a^(2) + y^(2)/b^(2) = 1 , is

Show that the tangents at the ends of conjugate diameters of the ellipse x^(2)/a^(2)+y^(2)/b^(2)=1 intersect on the ellipse x^(2)/a^(2)+y^(2)/b^(2)=2 .

The locus of the poles of normal chords of the ellipse x^(2)/a^(2) + y^(2)/b^(2) = 1 , is

For the ellipse,(x^(2))/(a^(2))+(y^(2))/(b^(2))=1 the equation of the diameter conjugate ax-by=0 is-