Home
Class 12
MATHS
Ifchord ofcontact ofthe tangents drawn f...

Ifchord ofcontact ofthe tangents drawn from the point `(alpha,beta)`to the ellipse `x^2/a^2+y^2/b^2=1`,touches the circle `x^2+y^2=c^2`, then the locus of the point

A

`b^4c^2x^2+a^4c^2y^2=a^4b^4`

B

`b^2c^2x^2+a^2c^2y^2=1`

C

`b^4c^2x^2+a^4c^2y^2=1`

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

If chord of contact of the tangent drawn from the point (a,b) to the ellipse (x^(2))/(a^(2))+(y^(2))/(b^(2))=1 touches the circle x^(2)+y^(2)=k^(2), then find the locus of the point (a,b).

If the chord of contact of tangents from a point P(h, k) to the circle x^(2)+y^(2)=a^(2) touches the circle x^(2)+(y-a)^(2)=a^(2) , then locus of P is

chord of contact of the tangents drawn from a point on the circle x^(2)+y^(2)=81 to the circle x^(2)+y^(2)=b^(2) touches the circle x^(2)+y^(2)=16 , then the value of b is

If the chord of contact of tangents from a point (x_(1),y_(1)) to the circle x^(2)+y^(2)=a^(2) touches the circle (x-a)^(2)+y^(2)=a^(2), then the locus of (x_(1),y_(1)) is

If the chord of contact of the tangents drawn from a point on the circle x^(2)+y^(2)+y^(2)=a^(2) to the circle x^(2)+y^(2)=b^(2) touches the circle x^(2)+y^(2)=c^(2), then prove that a,b and c are in GP.

If the chord of contact of the tangents from the point (alpha, beta) to the circle x^(2)+y^(2)=r_(1)^(2) is a tangent to the circle (x-a)^(2)+(y-b)^(2)=r_(2)^(2) , then