Home
Class 12
MATHS
If the straight line lx+my+n=0 be a norm...

If the straight line `lx+my+n=0` be a normal to the hyperbola `(x^2)/(a^2)-(y^2)/(b^2)=1`, then by the application of calculus, prove that `(a^2)/(l^2)-(b^2)/(m^2)=((a^2+b^2)^2)/(n^2)`.

A

`(a^2+b^2)/(n^2)`

B

`((a^2+b^2)^2)/(n^2)`

C

`(a^2-b^2)/(n^2)`

D

`((a^2-b^2)^2)/(n^2)`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

Line xcos alpha +y sin alpha =p is a normal to the hyperbola (x^2)/(a^2)-(y^2)/(b^2)=1 , if

The line lx+my+n=0 will be a normal to the hyperbola b^(2)x^(2)-a^(2)y^(2)=a^(2)b^(2) if

The line lx+my=n is a normal to the ellipse (x^(2))/(a^(2))+(y^(2))/(b^(2))=1, if

If the line lx+my+n=0 touches the hyperbola (x^(2))/(a^(2))-(y^(2))/(b^(2))=1 . Then

Find the condition that line lx + my - n = 0 will be a normal to the hyperbola x^(2)/a^(2) - y^(2)/b^(2) = 1 .

Find the equations of the tangent and normal to the hyperbola (x^(2))/(a^(2))-(y^(2))/(b^(2))=1 at the point

The line lx+my+n=0 is a normal to the ellipse (x^(2))/(a^(2))+(y^(2))/(b^(2))=1. then prove that (a^(2))/(l^(2))+(b^(2))/(m^(2))=((a^(2)-b^(2))^(2))/(n^(2))

The pole of the line lx+my+n=0 with respect to the hyperbola (x^(2))/(a^(2))-(y^(2))/(b^(2))=1 , is