Home
Class 12
MATHS
If (x1,y1),(x2,y2)" and "(x3,y3) are the...

If `(x_1,y_1),(x_2,y_2)" and "(x_3,y_3)` are the feet of the three normals drawn from a point to the parabola `y^2=4ax`, then `(x_1-x_2)/(y_3)+(x_2-x_3)/(y_1)+(x_3-x_1)/(y_2)` is equal to

A

`4a`

B

`2a`

C

`a`

D

0

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expression \[ \frac{x_1 - x_2}{y_3} + \frac{x_2 - x_3}{y_1} + \frac{x_3 - x_1}{y_2} \] where \((x_1, y_1)\), \((x_2, y_2)\), and \((x_3, y_3)\) are the feet of the normals drawn from a point to the parabola \(y^2 = 4ax\). ### Step 1: Parametric Representation of Points We can represent the points on the parabola using the parametric equations: - For point P: \((x_1, y_1) = (at_1^2, 2at_1)\) - For point Q: \((x_2, y_2) = (at_2^2, 2at_2)\) - For point R: \((x_3, y_3) = (at_3^2, 2at_3)\) ### Step 2: Substitute the Parametric Values Substituting these values into the expression: \[ \frac{at_1^2 - at_2^2}{2at_3} + \frac{at_2^2 - at_3^2}{2at_1} + \frac{at_3^2 - at_1^2}{2at_2} \] ### Step 3: Simplify Each Term We can factor out \(a\) from the numerator and \(2a\) from the denominator: \[ = \frac{a(t_1^2 - t_2^2)}{2at_3} + \frac{a(t_2^2 - t_3^2)}{2at_1} + \frac{a(t_3^2 - t_1^2)}{2at_2} \] This simplifies to: \[ = \frac{t_1^2 - t_2^2}{2t_3} + \frac{t_2^2 - t_3^2}{2t_1} + \frac{t_3^2 - t_1^2}{2t_2} \] ### Step 4: Use the Difference of Squares Using the identity \(a^2 - b^2 = (a - b)(a + b)\), we can rewrite each term: \[ = \frac{(t_1 - t_2)(t_1 + t_2)}{2t_3} + \frac{(t_2 - t_3)(t_2 + t_3)}{2t_1} + \frac{(t_3 - t_1)(t_3 + t_1)}{2t_2} \] ### Step 5: Apply the Condition for Conormal Points From the properties of conormal points, we know that: \[ t_1 + t_2 + t_3 = 0 \] This implies \(t_1 + t_2 = -t_3\), \(t_2 + t_3 = -t_1\), and \(t_3 + t_1 = -t_2\). ### Step 6: Substitute Back into the Expression Substituting these back into our expression gives: \[ = \frac{(t_1 - t_2)(-t_3)}{2t_3} + \frac{(t_2 - t_3)(-t_1)}{2t_1} + \frac{(t_3 - t_1)(-t_2)}{2t_2} \] ### Step 7: Simplify Each Term This simplifies to: \[ = \frac{-(t_1 - t_2)}{2} + \frac{-(t_2 - t_3)}{2} + \frac{-(t_3 - t_1)}{2} \] ### Step 8: Combine the Terms Combining these terms leads to: \[ = \frac{-(t_1 - t_2 + t_2 - t_3 + t_3 - t_1)}{2} = \frac{-0}{2} = 0 \] ### Final Answer Thus, the value of the expression is: \[ \frac{x_1 - x_2}{y_3} + \frac{x_2 - x_3}{y_1} + \frac{x_3 - x_1}{y_2} = 0 \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If P(x_(1),y_(1)),Q(x_(2),y_(2)) and R(x_(3),y_(3)) are three points on y^(2)=4ax and the normal at PQ and R meet at a point,then the value of (x_(1)-x_(2))/(y_(3))+(x_(2)-x_(3))/(y_(1))+(x_(3)-x_(1))/(y_(2))=

If (x_(1),y_(1)) and (x_(2),y_(2)) are the end points of focal chord of the parabola y^(2)=4ax then 4x_(1)x_(2)+y_(1)y_(2)

If (x_(1),y_(1)),(x_(2),y_(2)),(x_(3),y_(3)) be three points on the parabola y2=4ax, the normals at which meet in a point,then

If (x_(1) , y_(1)) " and " (x_(2), y_(2)) are ends of a focal chord of parabola 3y^(2) = 4x , " then " x_(1) x_(2) + y_(1) y_(2) =

The number of distinct normals that be drawn from (-2,1) to the parabola y^(2)-4x-2y-3=0 is:

If the tangents to the parabola y^(2)=4ax at (x_(1),y_(1)),(x_(2),y_(2)) intersect at (x_(3),y_(3)) then

If A (x_(1), y_(1)), B (x_(2), y_(2)) and C (x_(3), y_(3)) are vertices of an equilateral triangle whose each side is equal to a, then prove that |(x_(1),y_(1),2),(x_(2),y_(2),2),(x_(3),y_(3),2)| is equal to

If the tangents to the parabola y^2=4ax at the points (x_1,y_1) and ( (x_2,y_2) meet at the point (x_3,y_3) then

If A(x_1, y_1), B (x_2, y_2) and C (x_3, y_3) are the vertices of a DeltaABC and (x, y) be a point on the internal bisector of angle A , then prove that : b|(x,y,1),(x_1, y_1, 1), (x_2, y_2, 1)|+c|(x, y,1), (x_1, y_1, 1), (x_3, y_3, 1)|=0 where AC = b and AB=c .

If A(x_1, y_1),B(x_2, y_2) and C(x_3,y_3) are vertices of an equilateral triangle whose each side is equal to a , then prove that |[x_1,y_1, 2],[x_2,y_2, 2],[x_3,y_3, 2]|^2=3a^4