Home
Class 12
MATHS
The locus of a point p in each of the fo...

The locus of a point p in each of the following, if the slope of the three normals drawn from p to the parabola `y^2=4ax`.
Connected by the relations `tan^(-1)m_(1)^(2)+tan^(-1)m_(2)^(2)+tan^(-1)m_(3)^(2)= tan^(-1)m_1+ tan^(-1)m_2+ tan^(-1)m_3` is

A

`y^2-2ax+3ay-xy+4a^2=0`

B

`y^2-2ax-3ay-xy+4a^2=0`

C

`y^2-2ax+3ay-xy+4a^2=0`

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

The locus of a point P(h,k) such that the slopes of three normals drawn to the parabola y^(2)=4ax from P be connected by the relation tan^(-1)m_(1)^(2)+tan^(-1)m_(2)^(2)+tan^(-1)m_(3)^(2)=alpha is

tan^(-1)3-tan^(-1)2=tan^(-1)(1/7)

tan^(-1)3-tan^(-1)2=tan^(-1)(1/7)

The value of tan^(-1)1+tan^(-1)2+tan^(-1)3 is

Evaluate : tan^(-1)1+tan^(-1)2+tan^(-1)3 .

tan^(-1)1+tan^(-1)2+tan^(-1)3=

tan^(-1)2-tan^(-1)1=tan^(-1)(1)/(3)

tan(tan^(-1)((1)/(2))-tan^(-1)((1)/(3)))=

Prove that 2tan^(-1)((1)/(2))=tan^(-1)((4)/(3))

tan^(-1)2-tan^(-1)1=tan^(-1)((1)/(3))