Home
Class 12
MATHS
Tangents at A(a cos theta1, b sin theta1...

Tangents at `A(a cos theta_1, b sin theta_1)" and "B(a cos theta_2, b sin theta_2)` to the ellipse are `(x^2)/(a^2)+(y^2)/(b^2)=1` perpendicular and their point of intersection is `T(x_1,y_1)`. Normal at A and B meet at point N(h, k). Then:

A

`(a^2+b^2)cos^2((theta_1- theta_2)/(2))=a^2 cos^2((theta_1+theta_2)/(2))+b^2 sin^2((theta_1+theta_2)/(2))`

B

Origin, N and T are vertices of a right-angle triangle

C

`cos^2 ((theta_1-theta_2)/(2))=(a^2+b^2)/((a+b)^2)`

D

Origin, N and T are collinear points

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

If x=a cos theta - b sin theta , and y=a sin theta+b cos theta , what is the value of (x^2+y^2)/(a^2+b^2) ?

If x=a sin theta and y=b cos theta , then prove : (x^(2))/(a^(2))+(y^(2))/(b^(2))=1

If x=a sin theta+b cos theta and y=a cos theta -b sin theta, " prove that " x^(2)+y^(2)=a^(2)+b^(2).

If x=a cos theta-b sin theta and y=a sin theta+b cos theta then prove that :x^(2)+y^(2)=a^(2)+b^(2)

If x=a cos theta + b sin theta and y=a sin theta - b cos theta. then a ^(2) +b^(2) is equal to

If x=a cos theta+b sin theta and y=a sin theta-b cos theta, then prove that y^(2)(d^(2)y)/(dx^(2))-x(dy)/(dx)+y=0

If (x)/(a)cos theta+(y)/(b)sin theta=1 and (x)/(a)sin theta-(y)/(b)cos theta=-1, prove that (x^(2))/(a^(2))+(y^(2))/(b^(2))=2

If (x)/(a)cos theta+(y)/(b)sin theta=1 and (x)/(a)sin theta-(y)/(b)cos theta=1 Prove that :(x^(2))/(a^(2))+(y^(2))/(b^(2))=2

x=b sin^(2)theta & y=a cos^(2)theta