Home
Class 12
MATHS
The line lx + my+n=0 will be a normal t...

The line `lx + my+n=0` will be a normal to the hyperbola `b^2x^2-a^2y^2=a^2b^2` if

A

`(a^2)/(l^2)-(b^2)/(m^2)=((a^2+b^2)^2)/(n^2)`

B

`(l^2)/(a^2)-(m^2)/(b^2)=((a^2+b^2)^2)/(n^2)`

C

`(a^2)/(l^2)+(b^2)/(m^2)=((a^2-b^2)^2)/(n^2)`

D

`(l^2)/(a^2)+(m^2)/(b^2)=((a^2-b^2)^2)/(n^2)`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

The line lx+my+n=0 will be a normal to the hyperbola b^(2)x^(2)-a^(2)y^(2)=a^(2)b^(2) if

Find the condition that line lx + my - n = 0 will be a normal to the hyperbola x^(2)/a^(2) - y^(2)/b^(2) = 1 .

The line lx+my+n=0 is a normal to the parabola y^(2)=4ax if

if the line x cos alpha+y sin alpha=p be a normal to the hyperbola b^(2)x^(2)-a^(2)y^(2)=a^(2)b^(2), shopw that,p^(2)(a^(2)sec^(2)alpha-b^(2)cos ec^(2)alpha)=(a^(2)+b^(2))^(2)

The line 1x+my+n=0 is a normal to the parabola y^(2)=4ax if :

Find the condition that the line lx + my = n may be a normal to the ellipse x^(2)/(a^(2)) + y^(2)/b^(2) =1