Home
Class 12
MATHS
If beta is one of the angles between the...

If `beta` is one of the angles between the normals to the ellipse, `x^2+3y^2=9` at the points `(3 cos theta, sqrt(3) sin theta)" and "(-3 sin theta, sqrt(3) cos theta), theta in (0,(pi)/(2))`, then `(2 cos beta)/(sin 2 theta)` is equal to:

A

`(1)/(sqrt(3))`

B

`(2)/(sqrt(3))`

C

`sqrt(2)`

D

`(sqrt(3))/(4)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will follow the outlined approach based on the information provided in the video transcript. ### Step 1: Understand the Equation of the Ellipse The given ellipse is represented by the equation: \[ x^2 + 3y^2 = 9 \] ### Step 2: Differentiate the Ellipse Equation To find the slope of the tangent line at any point on the ellipse, we differentiate the equation implicitly: \[ 2x + 3 \cdot 2y \cdot \frac{dy}{dx} = 0 \] This simplifies to: \[ \frac{dy}{dx} = -\frac{2x}{6y} = -\frac{x}{3y} \] ### Step 3: Find the Slope of the Normals The slope of the normal line is the negative reciprocal of the slope of the tangent line: \[ \text{slope of normal} = -\frac{1}{\frac{dy}{dx}} = \frac{3y}{x} \] ### Step 4: Calculate the Slope of Normals at Given Points The points given are: 1. \( (3 \cos \theta, \sqrt{3} \sin \theta) \) 2. \( (-3 \sin \theta, \sqrt{3} \cos \theta) \) **For the first point \( (3 \cos \theta, \sqrt{3} \sin \theta) \):** \[ M_1 = \frac{3(\sqrt{3} \sin \theta)}{3 \cos \theta} = \frac{\sqrt{3} \sin \theta}{\cos \theta} = \sqrt{3} \tan \theta \] **For the second point \( (-3 \sin \theta, \sqrt{3} \cos \theta) \):** \[ M_2 = \frac{3(\sqrt{3} \cos \theta)}{-3 \sin \theta} = -\sqrt{3} \cot \theta \] ### Step 5: Find the Angle Between the Normals The angle \( \beta \) between the two normals can be found using the formula: \[ \tan \beta = \left| \frac{M_1 - M_2}{1 + M_1 M_2} \right| \] Substituting \( M_1 \) and \( M_2 \): \[ \tan \beta = \left| \frac{\sqrt{3} \tan \theta + \sqrt{3} \cot \theta}{1 - \sqrt{3} \tan \theta \cdot (-\sqrt{3} \cot \theta)} \right| \] This simplifies to: \[ \tan \beta = \left| \frac{\sqrt{3} (\tan \theta + \cot \theta)}{1 + 3} \right| = \left| \frac{\sqrt{3} (\tan \theta + \cot \theta)}{4} \right| \] ### Step 6: Simplify \( \tan \beta \) Using the identity \( \tan \theta + \cot \theta = \frac{\sin^2 \theta + \cos^2 \theta}{\sin \theta \cos \theta} = \frac{1}{\sin \theta \cos \theta} \): \[ \tan \beta = \left| \frac{\sqrt{3}}{4 \sin \theta \cos \theta} \right| = \frac{\sqrt{3}}{4} \cdot \frac{1}{\frac{1}{2} \sin 2\theta} = \frac{\sqrt{3}}{2 \sin 2\theta} \] ### Step 7: Find \( 2 \cot \beta \) Since \( \cot \beta = \frac{1}{\tan \beta} \): \[ \cot \beta = \frac{2 \sin 2\theta}{\sqrt{3}} \] Thus, \[ 2 \cot \beta = \frac{4 \sin 2\theta}{\sqrt{3}} \] ### Step 8: Calculate \( \frac{2 \cot \beta}{\sin 2\theta} \) Now, we compute: \[ \frac{2 \cot \beta}{\sin 2\theta} = \frac{\frac{4 \sin 2\theta}{\sqrt{3}}}{\sin 2\theta} = \frac{4}{\sqrt{3}} \] ### Final Answer Thus, the final result is: \[ \frac{2 \cot \beta}{\sin 2\theta} = \frac{4}{\sqrt{3}} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Solve sqrt(3) cos theta-3 sin theta =4 sin 2 theta cos 3 theta .

If cos theta+sqrt(3)sin theta=2, then theta=

The distance between the points (cos theta,sin theta) and (sin theta-cos theta) is sqrt(3)(b)sqrt(2)(d)1

If 2 - cos^(2) theta = 3 sin theta cos theta , sin theta ne cos theta then tan theta is

One of the general solutions of sqrt(3) cos theta -3 sin theta =4 sin 2 theta cos 3 theta is

(sin theta-2sin^(3)theta)/(2cos^(3)theta-cos theta)=tan theta

Prove that (sin theta - 2 sin^(3) theta)/(2 cos^(3) theta - cos theta) = tan theta

Prove that: (sin theta - 2 sin^(3) theta) = (2cos^(3) theta - cos theta) tan theta .