Home
Class 12
MATHS
Let a, r, s, t be non-zero real numbers....

Let a, r, s, t be non-zero real numbers. Let `P(at^2, 2at), Q, R(ar^2, 2ar) and S(as^2, 2as)` be distinct points onthe parabola `y^2 = 4ax`. Suppose that PQ is the focal chord and lines QR and PK are parallel, where K isthe point (2a, 0). The value of r is

A

`-(1)/(t)`

B

`(t^2+1)/(t)`

C

`(1)/(t)`

D

`(t^2-1)/(t)`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

Let a, r, s, t be non-zero real numbers. Let P(at^(2),2at),Q(ar^(2),2ar)andS(as^(2),2as) be distinct points on the parabola y^(2)=4ax . Suppose that PQ is the focal chord and lines QR and PK are parallel, where K the point (2a,0). If st=1, then the tangent at P and the normal at S to the parabola meet at a point whose ordinate is

If tangent at P and Q to the parabola y^(2)=4ax intersect at R then prove that mid point the parabola,where M is the mid point of P and Q.

If P(at_(1)^(2), 2at_(1))" and Q(at_(2)^(2), 2at_(2)) are two points on the parabola at y^(2)=4ax , then that area of the triangle formed by the tangents at P and Q and the chord PQ, is

The point P on the parabola y^(2)=4ax for which | PR-PQ | is maximum, where R(-a, 0) and Q (0, a) are two points,

Let P and Q be the points on the parabola y^(2)=4x so that the line segment PQ subtends right angle If PQ intersects the axis of the parabola at R, then the distance of the vertex from R is

If the tangents at the points P and Q on the parabola y^2 = 4ax meet at R and S is its focus, prove that SR^2 = SP.SQ .

Let P(at_(1)^(2),2at_(1)) and Q(at_(2)^(@),2at_(2)) are two points on the parabola y^(2)=4ax Then,the equation of chord is y(t_(1)+t_(2))=2x+2at_(1)t_(2)

Let P(2, 2) and Q(1//2, -1) be two points on the parabola y^(2)=2x , The coordinates of the point R on the parabola y^(2) =2x where the tangent to the curve is parallel to the chord PQ, are