To find the maximum area \( A \) of triangle \( PF_1F_2 \) where \( P \) is a point on the ellipse given by the equation
\[
\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1,
\]
we first need to identify the coordinates of the foci \( F_1 \) and \( F_2 \) of the ellipse. The foci are located at
\[
F_1(-ae, 0) \quad \text{and} \quad F_2(ae, 0),
\]
where \( e = \sqrt{1 - \frac{b^2}{a^2}} \) is the eccentricity of the ellipse.
### Step 1: Area of Triangle \( PF_1F_2 \)
The area \( A \) of triangle \( PF_1F_2 \) can be calculated using the formula for the area of a triangle given by vertices at coordinates \( (x_1, y_1) \), \( (x_2, y_2) \), and \( (x_3, y_3) \):
\[
A = \frac{1}{2} \left| x_1(y_2 - y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2) \right|.
\]
Substituting the coordinates of points \( P(h, k) \), \( F_1(-ae, 0) \), and \( F_2(ae, 0) \):
\[
A = \frac{1}{2} \left| h(0 - 0) + (-ae)(0 - k) + (ae)(k - 0) \right|.
\]
This simplifies to:
\[
A = \frac{1}{2} \left| ae k + ae k \right| = \frac{1}{2} \left| 2aek \right| = aek.
\]
### Step 2: Express \( k \) in terms of \( h \)
Since point \( P(h, k) \) lies on the ellipse, we can express \( k \) in terms of \( h \):
\[
k = b \sqrt{1 - \frac{h^2}{a^2}}.
\]
### Step 3: Substitute \( k \) into the Area Formula
Now substituting \( k \) into the area formula:
\[
A = ae \cdot b \sqrt{1 - \frac{h^2}{a^2}}.
\]
### Step 4: Maximize the Area
To maximize \( A \), we need to maximize the expression:
\[
A = abe \sqrt{1 - \frac{h^2}{a^2}}.
\]
Let \( x = \frac{h}{a} \), then \( A = abe \sqrt{1 - x^2} \) where \( -1 \leq x \leq 1 \).
### Step 5: Differentiate and Find Critical Points
To find the maximum, we differentiate \( A \) with respect to \( x \):
\[
\frac{dA}{dx} = abe \cdot \frac{-x}{\sqrt{1 - x^2}}.
\]
Setting \( \frac{dA}{dx} = 0 \) gives \( x = 0 \) as the critical point.
### Step 6: Evaluate the Maximum Area
Substituting \( x = 0 \) back into the area formula:
\[
A_{\text{max}} = abe \sqrt{1 - 0^2} = abe.
\]
### Final Result
Thus, the maximum area \( A \) of triangle \( PF_1F_2 \) is:
\[
\boxed{ab \sqrt{1 - \frac{b^2}{a^2}}}.
\]