Home
Class 12
MATHS
Let f(x) be defined in (0, 1), then the...

Let `f(x)` be defined in `(0, 1)`, then the domain of definition of `f(e^x) + f(ln|x|)` is (A) `(1/e,1)` (B) `(-e,-1)` (C) `(1,e)` (D) `(e^2,e^2+2)`

A

(-1,e)

B

(1,e)

C

(-e,-1)

D

(-e,1)

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

The domain of f(x) is (0,1). Then the domain of (f(e^(x))+f(1n|x|) is (-1,e) (b) (1,e)(-e,-1)(d)(-e,1)

The domain of definition of f(x) = sqrt(e^((cos^-1(log_(4) x^(2))) is

Range of the function f(x)=(ln x)/(sqrt(x)) is (a) (-oo,\ e) (b) (-oo,\ e^2) (c) (-oo,2/e) (d) (-oo,1/e)

The domain of the function f(x)=log_(e)((1)/(sqrt(|x|-x))) is

The maximum value of (log x)/(x) is (a) 1 (b) (2)/(e)(c) e (d) (1)/(e)

Let f(x)=log_(e)|x-1|, x ne 1 , then the value of f'((1)/(2)) is

If domain of f(x) be (-1,2), then (1) domain of f(sin x) will be (-oo,oo)(2) domain of f(ln x) will be ((1)/(e),e^(2))(3) domain of f(2x-3) will be (1,5/2)(4) domain of f([x]) will be [0,2), where [x]<=x

The function f(x)=x^(x) decreases on the interval (a) (0,e)(b)(0,1)(c)(0,1/e)(d)(1/e,e)

Let f:[(1)/(2),1]rarr R (the set of all real numbers) be a positive,non-constant,and differentiable function such that f'(x)<2f(x) and f((1)/(2))=1. Then the value of int_((1)/(2))^(1)f(x)dx lies in the interval (a) (2e-1,2e)(b)(3-1,2e-1)(c)((e-1)/(2),e-1)( d) (0,(e-1)/(2))

Let f:Rto R be a functino defined by f (x) = e ^(x) -e ^(-x), then f'(1)=