Home
Class 12
MATHS
Solve the equation for x : log4+(1+1/(2x...

Solve the equation for `x : log4+(1+1/(2x))log3=log(3x+27)`

A

0

B

2

C

3

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

Solve the equation for x:log4+(1+(1)/(2x))log3=log(root(z)(3)+27)

log4+(1+(1)/(2x))log3=log(3^((1)/(x))+27)

Solve the equation: (log(x+1))/(log x)=2

Solve the equations for x and y:(3x)^(log3)=(4y)^(log 4), 4 ^(log x) = 3 ^(log y) .

Solve the equation log(3x^(2)+x-2)=3log(3x-2) .

Solve the equation log(x-1)+log(x+8)=2log(x+2)

Solve the equation: log_(2)x+log_(4)(x+2)=2

Solve the equation log(x+1)+log(x-1)=log3

Solve the following equation for x: 9^(log_(3)(log_(2)x))=log_(2)x-(log_(2)x)^(2)+1