Home
Class 12
MATHS
f(x)={{:(,[x]," if "-3 lt x le -1),(,[x]...

`f(x)={{:(,[x]," if "-3 lt x le -1),(,[x]," if "-1 lt x lt),(,|[-x]|," if "1 le x lt 3):}" then "{x : f(x) ge 0}` is equal to :

A

(-1,3)

B

[-1,3)

C

(-1,3]

D

[-1,3]

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the given piecewise function \( f(x) \) and determine the values of \( x \) for which \( f(x) \geq 0 \). ### Step 1: Define the function based on the intervals The function \( f(x) \) is defined as follows: - For \( -3 < x \leq -1 \), \( f(x) = \lfloor x \rfloor \) (greatest integer function). - For \( -1 < x < 1 \), \( f(x) = |\lfloor x \rfloor| \). - For \( 1 \leq x < 3 \), \( f(x) = |-\lfloor x \rfloor| \). ### Step 2: Analyze each interval #### Interval 1: \( -3 < x \leq -1 \) In this interval: - For \( -3 < x < -2 \), \( \lfloor x \rfloor = -3 \) so \( f(x) = -3 \) (which is negative). - For \( -2 \leq x \leq -1 \), \( \lfloor x \rfloor = -2 \) so \( f(x) = -2 \) (which is also negative). Thus, in the interval \( -3 < x \leq -1 \), \( f(x) < 0 \). #### Interval 2: \( -1 < x < 1 \) In this interval: - For \( -1 < x < 0 \), \( \lfloor x \rfloor = -1 \) so \( f(x) = |-1| = 1 \) (which is positive). - For \( 0 \leq x < 1 \), \( \lfloor x \rfloor = 0 \) so \( f(x) = |0| = 0 \) (which is non-negative). Thus, in the interval \( -1 < x < 1 \), \( f(x) \geq 0 \). #### Interval 3: \( 1 \leq x < 3 \) In this interval: - For \( 1 \leq x < 2 \), \( \lfloor x \rfloor = 1 \) so \( f(x) = | -1 | = 1 \) (which is positive). - For \( 2 \leq x < 3 \), \( \lfloor x \rfloor = 2 \) so \( f(x) = | -2 | = 2 \) (which is also positive). Thus, in the interval \( 1 \leq x < 3 \), \( f(x) \geq 0 \). ### Step 3: Combine the intervals where \( f(x) \geq 0 \) From our analysis: - \( f(x) < 0 \) for \( -3 < x \leq -1 \). - \( f(x) \geq 0 \) for \( -1 < x < 1 \). - \( f(x) \geq 0 \) for \( 1 \leq x < 3 \). Therefore, the combined intervals where \( f(x) \geq 0 \) are: - \( (-1, 1) \) and \( [1, 3) \). ### Final Result Thus, the solution set for \( x \) such that \( f(x) \geq 0 \) is: \[ (-1, 3) \] Since \( -1 \) is not included in the interval and \( 3 \) is also not included, the correct answer is: \[ (-1, 3) \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)={:{(3", if " 0 le x le 1),(4", if " 1 lt x lt 3),(5", if " 3 le x le 10):} , then

f(x)={{:(|x|+3, if x le -3),(-2x, if -3 lt x lt 3 ),(6x + 2, if x ge3):}

If f(x)={{:(,4,-3lt x lt -1),(,5+x,-1le x lt 0),(,5-x,0 le x lt 2),(,x^(2)+x-3,2 lt x lt 3):} then, f(|x|) is

If f(x)={:{(x", for " 0 le x lt 1/2),(1-x", for " 1/2 le x lt 1):} , then

f(x)={(|x|+3",","if", x le -3),(-2x",", "if", -3 lt x lt 3),(6x+2",","if",x ge 3):} is

If f(x)={:{(3x+5", for " 0 le x lt 3),(2x+8", for " 3 le x lt 5),(x+13", for " 5 le x le 10):} , then

If f(x) ={(4-3x,",",0 lt x le 2),(2x-6,",",2 lt x le 3),(x+5,",",3 lt x le 6):} , then f(x) is

If f(x)={{:(,x^(2)+1,0 le x lt 1),(,-3x+5, 1 le x le 2):}

f(x){{:(2x "," if x lt 0 ),(0"," if 0 le x le 1),(4x "," if x gt 1 ):}

If f(x)={:{(x", for " 0 le x lt 1),(2", for " x=1),(x+1", for " 1 lt x le 2):} , then f is