Home
Class 12
MATHS
The range of the function f(x) =[sinx+co...

The range of the function `f(x) =[sinx+cosx]` (where `[x]` denotes the greatest integer function) is `f(x) in ` :

A

[-2,1]

B

{-2,-1,0,1}

C

{-1,1}

D

{-2,0,-1}

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

Domain of the function f(x)=(1)/([sinx-1]) (where [.] denotes the greatest integer function) is

The range of function f(x)=[[x]-x]+sin^(2)x , where [.] denotes the greatest integer function, is.

The period of the function f(x)=sin(x+3-[x+3]) where [] denotes the greatest integer function

The function f(x)=[x], where [x] denotes the greatest integer function,is continuous at

f(x)=[abs(sinx)+abs(cosx)] , where [*] denotes the greatest integer function.

The range of the function f(x)=2+x-[x-3] is, (where [.] denotes greatest integer function):

The function f(x)=[x^(2)]+[-x]^(2) , where [.] denotes the greatest integer function, is

The domain of the function f(x)= ln([[x]]/(5-[x])) where [ . ] denotes the greatest integer function is

The range of the function f(x)=(sin(pi|x+1|))/(x^(4)+1) (where [.] is the greatest integer function) is