Home
Class 12
MATHS
f(x)=(sin x^(7)) e^(x^(5)). Sgn( x^(9)) ...

`f(x)=(sin x^(7)) e^(x^(5)). Sgn( x^(9))` is:

A

an even function

B

an odd function

C

neither even nor odd

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To determine whether the function \( f(x) = (\sin x^7) e^{x^5} \cdot \text{sgn}(x^9) \) is even, odd, or neither, we will follow these steps: ### Step 1: Understand the Definitions - A function \( f(x) \) is **even** if \( f(-x) = f(x) \) for all \( x \). - A function \( f(x) \) is **odd** if \( f(-x) = -f(x) \) for all \( x \). ### Step 2: Calculate \( f(-x) \) We need to find \( f(-x) \): \[ f(-x) = \sin((-x)^7) \cdot e^{(-x)^5} \cdot \text{sgn}((-x)^9) \] ### Step 3: Simplify Each Component 1. **Sine Function**: \[ \sin((-x)^7) = \sin(-x^7) = -\sin(x^7) \quad \text{(since sine is an odd function)} \] 2. **Exponential Function**: \[ e^{(-x)^5} = e^{-x^5} \quad \text{(exponential function is even)} \] 3. **Sign Function**: \[ \text{sgn}((-x)^9) = \text{sgn}(-x^9) = -\text{sgn}(x^9) \quad \text{(sign function is odd)} \] ### Step 4: Combine the Components Now, substituting these back into \( f(-x) \): \[ f(-x) = (-\sin(x^7)) \cdot e^{-x^5} \cdot (-\text{sgn}(x^9)) \] This simplifies to: \[ f(-x) = \sin(x^7) \cdot e^{-x^5} \cdot \text{sgn}(x^9) \] ### Step 5: Compare \( f(-x) \) with \( f(x) \) Now we compare \( f(-x) \) with \( f(x) \): \[ f(x) = \sin(x^7) \cdot e^{x^5} \cdot \text{sgn}(x^9) \] We can see that: \[ f(-x) = \sin(x^7) \cdot e^{-x^5} \cdot \text{sgn}(x^9) \] ### Step 6: Determine the Relationship From the comparison: \[ f(-x) \neq f(x) \quad \text{(not even)} \] \[ f(-x) = -\left(\sin(x^7) \cdot e^{x^5} \cdot \text{sgn}(x^9)\right) = -f(x) \quad \text{(odd)} \] ### Conclusion Since \( f(-x) = -f(x) \), we conclude that the function \( f(x) \) is an **odd function**. ### Final Answer The function \( f(x) \) is an **odd function**. ---
Promotional Banner

Similar Questions

Explore conceptually related problems

f(x) = ("tan" x^(5))e^(x^(3)"sgn"x^(7)) " is " -

The function f(x)=(tan x^(11))e^(x^(5))sgn(x^(11))*[(1)/(3x^(2)+2)] where [.] denotes greatest integer functin ]]

f(x)=(sin^(2)x)e^(-2sin^(2)x)*max f(x)-min f(x) =

f(x)=sgn(cot^(-1)x),g(x)=sgn(x^(2)-4x+5)

f(x)=x sgn (x^(2)) should be

If f(x) = x^(3) sgn (x), then

Domain of the function f(x)=log_(x+2) ^(x^(2)-1)+sqrt(e^(x)-e^(2))+sqrt(sgn(x)) is

If f(x)=sin|x|-e^(|x|) then at x=0,f(x) is

If f(x)=sin x/ e^(x) in [0,pi] then f(x)

If F(x)= e^sin x then F(0)=