Home
Class 12
MATHS
Which of the following functions is an o...

Which of the following functions is an odd function:

A

f(x)=constant

B

f(x)=sin x+cos x

C

`f(x)=sin(log (x+sqrt(x^(2)+1))`

D

`f(x)=1+x+2x^(3)`

Text Solution

AI Generated Solution

The correct Answer is:
To determine which of the given functions is an odd function, we need to check if they satisfy the condition for odd functions, which states that a function \( f(x) \) is odd if: \[ f(-x) = -f(x) \] Let's analyze each option step by step. ### Step 1: Analyze Option A **Function:** \( f(x) = k \) (a constant) 1. Calculate \( f(-x) \): \[ f(-x) = k \] 2. Calculate \( -f(x) \): \[ -f(x) = -k \] 3. Compare \( f(-x) \) and \( -f(x) \): \[ k \neq -k \quad \text{(unless \( k = 0 \))} \] **Conclusion:** This function is not odd. ### Step 2: Analyze Option B **Function:** \( f(x) = \sin x + \cos x \) 1. Calculate \( f(-x) \): \[ f(-x) = \sin(-x) + \cos(-x) = -\sin x + \cos x \] 2. Calculate \( -f(x) \): \[ -f(x) = -(\sin x + \cos x) = -\sin x - \cos x \] 3. Compare \( f(-x) \) and \( -f(x) \): \[ -\sin x + \cos x \neq -\sin x - \cos x \] **Conclusion:** This function is not odd. ### Step 3: Analyze Option C **Function:** \( f(x) = \sin(\log x) + \sqrt{x^2 + 1} \) 1. Calculate \( f(-x) \): \[ f(-x) = \sin(\log(-x)) + \sqrt{(-x)^2 + 1} = \sin(\log(-x)) + \sqrt{x^2 + 1} \] Since \( \log(-x) = \log x + i\pi \) (not real for negative \( x \)), we will simplify this further. 2. We can express \( \sin(\log(-x)) \) as \( -\sin(\log x) \) (using the property of sine). 3. Therefore, we have: \[ f(-x) = -\sin(\log x) + \sqrt{x^2 + 1} \] 4. Calculate \( -f(x) \): \[ -f(x) = -(\sin(\log x) + \sqrt{x^2 + 1}) = -\sin(\log x) - \sqrt{x^2 + 1} \] 5. Compare \( f(-x) \) and \( -f(x) \): \[ -\sin(\log x) + \sqrt{x^2 + 1} \neq -\sin(\log x) - \sqrt{x^2 + 1} \] **Conclusion:** This function is not odd. ### Step 4: Analyze Option D **Function:** \( f(x) = 1 + x + 2x^3 \) 1. Calculate \( f(-x) \): \[ f(-x) = 1 - x - 2x^3 \] 2. Calculate \( -f(x) \): \[ -f(x) = -(1 + x + 2x^3) = -1 - x - 2x^3 \] 3. Compare \( f(-x) \) and \( -f(x) \): \[ 1 - x - 2x^3 \neq -1 - x - 2x^3 \] **Conclusion:** This function is not odd. ### Final Conclusion After analyzing all options, we find that none of the functions given are odd functions.
Promotional Banner

Similar Questions

Explore conceptually related problems

Which of the following function is an odd function?

Which of the following functions is odd ?

Which of the following function is an even function ?

Which of the following function is odd ?