Home
Class 12
MATHS
The period of the function f(x)=(sin x+s...

The period of the function `f(x)=(sin x+sin 2x+sin 4x+sin 5x)/(cos x+cos 2x+cos 4x+cos 5x)` is :

A

`pi/3`

B

`pi/4`

C

`pi`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To find the period of the function \[ f(x) = \frac{\sin x + \sin 2x + \sin 4x + \sin 5x}{\cos x + \cos 2x + \cos 4x + \cos 5x}, \] we can follow these steps: ### Step 1: Simplify the Function We will use the sum-to-product identities to simplify the numerator and denominator. The identities are: - \(\sin a + \sin b = 2 \sin\left(\frac{a+b}{2}\right) \cos\left(\frac{a-b}{2}\right)\) - \(\cos a + \cos b = 2 \cos\left(\frac{a+b}{2}\right) \cos\left(\frac{a-b}{2}\right)\) ### Step 2: Apply the Identities Let's apply the identities to the numerator and denominator: 1. **Numerator:** - Combine \(\sin x + \sin 5x\): \[ \sin x + \sin 5x = 2 \sin\left(\frac{6x}{2}\right) \cos\left(\frac{4x}{2}\right) = 2 \sin(3x) \cos(2x) \] - Combine \(\sin 2x + \sin 4x\): \[ \sin 2x + \sin 4x = 2 \sin\left(\frac{6x}{2}\right) \cos\left(\frac{2x}{2}\right) = 2 \sin(3x) \cos(x) \] Thus, the numerator becomes: \[ 2 \sin(3x) \cos(2x) + 2 \sin(3x) \cos(x) = 2 \sin(3x) (\cos(2x) + \cos(x)) \] 2. **Denominator:** - Combine \(\cos x + \cos 5x\): \[ \cos x + \cos 5x = 2 \cos\left(\frac{6x}{2}\right) \cos\left(\frac{4x}{2}\right) = 2 \cos(3x) \cos(2x) \] - Combine \(\cos 2x + \cos 4x\): \[ \cos 2x + \cos 4x = 2 \cos(3x) \cos(x) \] Thus, the denominator becomes: \[ 2 \cos(3x) (\cos(2x) + \cos(x)) \] ### Step 3: Simplify the Entire Function Now, substituting back, we have: \[ f(x) = \frac{2 \sin(3x) (\cos(2x) + \cos(x))}{2 \cos(3x) (\cos(2x) + \cos(x))} = \frac{\sin(3x)}{\cos(3x)} = \tan(3x) \] ### Step 4: Determine the Period The period of \(\tan(kx)\) is given by: \[ \text{Period} = \frac{\pi}{k} \] In our case, \(k = 3\), so: \[ \text{Period} = \frac{\pi}{3} \] ### Final Answer Thus, the period of the function \(f(x)\) is \(\frac{\pi}{3}\). ---
Promotional Banner

Similar Questions

Explore conceptually related problems

The period of the function f(x)=|sin 2x|+|cos 8x| is

Find the period of the function f(x) = (sin x + sin 3x)/(cos x + cos 3x)

(sin x + sin 3x + sin 5x)/(cos x + cos 3x + cos 5x) = tan 3x

the period of the function f(x)=|(cos)(x)/(2)|+|sin x| is

The period of the function f(x)=(1)/(2)((|sin x|)/(cos x)+(sin x)/(|cos x|)) is

The minimum period of the function f(x)=(|sin x|+|cos x|)/(|sin x-cos x|) is

(sin 5x + sin 3x)/(cos 5x + cos 3x) = tan 4x

The period of function (|sin x|+|cos x|)/(|sin x-cos x|+|sin x+cos x|) is :

(cos 4x sin 3x -cos 2x sin x )/(sin 4x sin x+ cos 6x cos x)= tan 2x

(( sin 7x + sin 5x)+(sin 9x + sin 3x))/((cos 7x + cos 5x)+(cos 9x+ cos 3x)) =tan 6x