Home
Class 12
MATHS
The period of function (|sin x|+|cos x|)...

The period of function `(|sin x|+|cos x|)/(|sin x-cos x|+|sin x+cos x|)` is :

A

`pi`

B

`pi/2`

C

`2pi`

D

`(2pi)/(3)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the period of the function \( f(x) = \frac{|\sin x| + |\cos x|}{|\sin x - \cos x| + |\sin x + \cos x|} \), we will analyze both the numerator and the denominator separately. ### Step 1: Analyze the Numerator The numerator is \( |\sin x| + |\cos x| \). 1. The functions \( |\sin x| \) and \( |\cos x| \) both have a fundamental period of \( \pi \). 2. To find the period of \( |\sin x| + |\cos x| \), we can check if \( f(x + \pi) = f(x) \): \[ f(x + \pi) = |\sin(x + \pi)| + |\cos(x + \pi)| \] Using the properties of sine and cosine: \[ = |\sin x| + |-\cos x| = |\sin x| + |\cos x| \] Thus, the period of the numerator \( |\sin x| + |\cos x| \) is \( \pi \). ### Step 2: Analyze the Denominator The denominator is \( |\sin x - \cos x| + |\sin x + \cos x| \). 1. Let's denote \( g(x) = |\sin x - \cos x| + |\sin x + \cos x| \). 2. We will check if \( g(x + \pi) = g(x) \): \[ g(x + \pi) = |\sin(x + \pi) - \cos(x + \pi)| + |\sin(x + \pi) + \cos(x + \pi)| \] Using the properties of sine and cosine: \[ = |-\sin x - (-\cos x)| + |-\sin x + (-\cos x)| \] Simplifying this gives: \[ = |-\sin x + \cos x| + |-\sin x - \cos x| = |\cos x - \sin x| + |-\sin x - \cos x| \] Since \( |a| = |-a| \), we can write: \[ = |\sin x - \cos x| + |\sin x + \cos x| = g(x) \] Thus, the period of the denominator \( |\sin x - \cos x| + |\sin x + \cos x| \) is also \( \pi \). ### Step 3: Determine the Overall Period Since both the numerator and denominator have a period of \( \pi \), we can conclude that the overall period of the function \( f(x) \) is also \( \pi \). ### Final Answer The period of the function \( \frac{|\sin x| + |\cos x|}{|\sin x - \cos x| + |\sin x + \cos x|} \) is \( \pi \).
Promotional Banner

Similar Questions

Explore conceptually related problems

(sin x+x cos x)/(x sin x-cos x)

y=(sin x+cos x)/(sin x-cos x)

The period of (|sin x|+|cos x|)/(|sin x-cos x|) is

The fundamental period of (|sinx|+|cos x |)/(|sin x - cos x|+|sin x + cos x|) is --

The period of the function f(x)=|sin x|+|cos x| is

int(sin x+cos x)/(sin x-cos x)dx

int(sin x cos x)/(1+sin x+cos x)

Ther period of the function f(x) =(|sin x|-|cosx|)/(|sin x + cos x|) is

The minimum period of the function f(x)=(|sin x|+|cos x|)/(|sin x-cos x|) is

The period of the function f(x)=|sin 2x|+|cos 8x| is