Home
Class 12
MATHS
The function f(x) = max {(1 - x), (1 + x...

The function `f(x) = max {(1 - x), (1 + x), 2}, x in (- oo, oo)` is equivalent to

A

`f(x)={{:(,1-x,x le -1),(,2,-1 lt x lt 1),(,1+x,x le -1):}`

B

`f(x)={{:(,1+x,x le -1),(,2,-1 lt x lt 1),(,1-x,x ge 1):}`

C

`f(x)={{:(,1-x,x le -1),(,1,-1 lt x lt 1),(,1+x, x ge 1):}`

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

The function f(x)=max_( is equivalent to ){(1-x),(1+x),2},x in(-oo,oo) is equivalent to

The function f(x)="max" {(1-x), (1+x), 2} is equivalent to

The domain of the function f(x) = sin ^(-1) ((|x| +5)/(x^2 +1)) is ( -oo , -a ] uu [ a,oo ). then a is equal to :

if f(x)=max{x^(2),x^(3),(1)/(64)} for all x in(0,oo)

The function f(x) = [ 1/4(3x^2 + 1), -oo< x<= 1; 5-4x, 1 < x< 4; 4-x, 4 <=x < oo is

The function f : (0, oo) rarr [0, oo), f(x) = (x)/(1+x) is

Consider the function f : (-oo , oo) to (-oo , oo) defined by f(x) = (x^(2) - ax + 1)/(x^(2) + ax + 1) , 0 lt a lt 2 Let g (x) = underset(0) overset(e^(x))(int) (f'(t))/(1 + t^(2)) dt Which of the following is true ?

The function f(x)= (x)/(1+|x|) is differentiable on (A) (0 oo) 0 oo) (B) (-oo 0) (C) (D) all the above

If function f(x) = (1+2x) has the domain (-(pi)/(2), (pi)/(2)) and co-domain (-oo, oo) then function is

The function defined by f(x)={x^(3)-1;1