Home
Class 12
MATHS
If x in [0,2pi]" then "y(1)=(sin x)/(|...

If `x in [0,2pi]" then "y_(1)=(sin x)/(|sin x|), y_(2)=(|cos x|)/(cos x)` are identical functions for ` x in :`
I. `(0,pi/2)" "II. (pi/2, pi)," "III. (pi,(3pi)/(2))," "IV. ((3pi)/(2),2pi)`

A

I,II

B

I,III

C

II,III

D

I,IV

Text Solution

AI Generated Solution

The correct Answer is:
To determine the intervals where the functions \( y_1 = \frac{\sin x}{|\sin x|} \) and \( y_2 = \frac{|\cos x|}{\cos x} \) are identical, we need to analyze the behavior of these functions across the specified intervals. ### Step-by-Step Solution: 1. **Identify the intervals**: We are given four intervals to check: - I. \( (0, \frac{\pi}{2}) \) - II. \( (\frac{\pi}{2}, \pi) \) - III. \( (\pi, \frac{3\pi}{2}) \) - IV. \( (\frac{3\pi}{2}, 2\pi) \) 2. **Evaluate \( y_1 \) and \( y_2 \) in each interval**: **Interval I: \( (0, \frac{\pi}{2}) \)** - In this interval, both \( \sin x \) and \( \cos x \) are positive. - Therefore, \( |\sin x| = \sin x \) and \( |\cos x| = \cos x \). - Thus, \( y_1 = \frac{\sin x}{\sin x} = 1 \) and \( y_2 = \frac{\cos x}{\cos x} = 1 \). - Hence, \( y_1 = y_2 \). **Interval II: \( (\frac{\pi}{2}, \pi) \)** - Here, \( \sin x \) is positive and \( \cos x \) is negative. - Thus, \( |\sin x| = \sin x \) and \( |\cos x| = -\cos x \). - Therefore, \( y_1 = \frac{\sin x}{\sin x} = 1 \) and \( y_2 = \frac{-\cos x}{\cos x} = -1 \). - Hence, \( y_1 \neq y_2 \). **Interval III: \( (\pi, \frac{3\pi}{2}) \)** - In this interval, both \( \sin x \) and \( \cos x \) are negative. - Thus, \( |\sin x| = -\sin x \) and \( |\cos x| = -\cos x \). - Therefore, \( y_1 = \frac{\sin x}{-\sin x} = -1 \) and \( y_2 = \frac{-\cos x}{\cos x} = -1 \). - Hence, \( y_1 = y_2 \). **Interval IV: \( (\frac{3\pi}{2}, 2\pi) \)** - Here, \( \sin x \) is negative and \( \cos x \) is positive. - Thus, \( |\sin x| = -\sin x \) and \( |\cos x| = \cos x \). - Therefore, \( y_1 = \frac{\sin x}{-\sin x} = -1 \) and \( y_2 = \frac{\cos x}{\cos x} = 1 \). - Hence, \( y_1 \neq y_2 \). 3. **Conclusion**: The functions \( y_1 \) and \( y_2 \) are identical in the intervals: - I. \( (0, \frac{\pi}{2}) \) - III. \( (\pi, \frac{3\pi}{2}) \) Thus, the answer is that \( y_1 \) and \( y_2 \) are identical functions for intervals I and III.
Promotional Banner

Similar Questions

Explore conceptually related problems

f(x)=(s i x)/(sqrt(1+tan^2x))+(cos x)/(sqrt(1+cot^2x)) is constant in which of following interval a. \ (0,\ pi/2) b. (pi/2,\ pi) c. (pi,\ ((3pi)/2) d. ((3pi)/2,2pi)

The function f(x)=tan^(-1)(sin x+cos x) is an increasing function in (-(pi)/(2),(pi)/(4))(b)(0,(pi)/(2))(-(pi)/(2),(pi)/(2))(d)((pi)/(4),(pi)/(2))

int_(pi//4) ^(3pi//4) dx/((sin x - 2 cosx)(2sin x + cos x))=

int_(0)^( pi)(x sin2x sin((pi)/(2)cos x))/(2x-pi)dx is equal to

The period of f(x)=(sin(pi x))/(2)+2(cos(pi x))/(3)-(tan(pi x))/(4) is

x=a cos t,y=a sin t then (d^(2)(y))/(dx^(2)) at t=(pi)/(3),(pi)/(6),(pi)/(2),(pi)/(4)

Statement I y = tan^(-1) ( tan x) " and " y = cos^(-1) ( cos x) " does not have nay solution , if " x in (pi/2, (3pi)/2) Statement II y = tan^(-1)( tan x) = x - pi, x in (pi/2, (3pi)/2) " and " y = cos^(-1) ( cos x) = {{:(2pi - x", " x in [pi, (3pi)/2]),(" x, " x in [pi/2,pi]):}

[sin ((pi) / (2) -x) + sin (pi-x)] ^ (2) + [(cos ((3 pi) / (2) -x) + cos (2 pi-x)] ^ (2) =