Home
Class 12
MATHS
Construct the graph of the function y=f(...

Construct the graph of the function `y=f(x-1)+f(x+1)` where `f(x) = 1 - |x|` where `|x| le1`, `f(x) = 0` where `|x|gt1`

Promotional Banner

Similar Questions

Explore conceptually related problems

construct the graph of the function y=f(x-1)+f(x+1) where f(x)=1-|x| where |x| 1

If f(x-1)=f(x+2) , where f(x)=1+x-x^2 then: x=

If f(x-1)=f(x+1) , where f(x)=x^2-2x+3 , then: x=

If f(x)=(1)/(x)-1 where x ne 0, then: f(1-x)=

If f(x)=(1-x)/(1+x) , where x ne -1, then: f^-1(x)=

int_(-1)^(2)f(x)dx " where " f(x) = |x+1| +|x|+ |x-1| is equal to

lim_(x rarr1)f(x), where f(x)={x^(2)-1,x 1

Test the continuity of the function _(1)f(x)atx=0, where f(x)=(e^((1)/(x)))/(1+e^((1)/(x))), when x!=0=0, where x=0

Find (lim)_(x rarr1)f(x), where f(x)=[x^(2)-1,x 1

Find lim_(x to 1) f(x) , where f(x) = {{:(x + 1, x != 1),(0, x = 1):}}