Home
Class 12
MATHS
Let f(x)=(ax+b)/(cx+d). Then the fof (x...

Let `f(x)=(ax+b)/(cx+d)`. Then the fof (x) =x provided that

A

d=-a

B

d=a

C

a=b=c=d=1

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the conditions under which \( f(f(x)) = x \) for the function \( f(x) = \frac{ax + b}{cx + d} \). ### Step-by-Step Solution: 1. **Define the function**: \[ f(x) = \frac{ax + b}{cx + d} \] 2. **Find \( f(f(x)) \)**: We need to substitute \( f(x) \) into itself: \[ f(f(x)) = f\left(\frac{ax + b}{cx + d}\right) \] Substituting into the function: \[ f(f(x)) = \frac{a\left(\frac{ax + b}{cx + d}\right) + b}{c\left(\frac{ax + b}{cx + d}\right) + d} \] 3. **Simplify the numerator**: \[ = \frac{\frac{a(ax + b)}{cx + d} + b}{\frac{c(ax + b)}{cx + d} + d} \] This simplifies to: \[ = \frac{\frac{a^2x + ab + b(cx + d)}{cx + d}}{\frac{c(ax + b) + d(cx + d)}{cx + d}} \] Which further simplifies to: \[ = \frac{(a^2 + bc)x + (ab + bd)}{(ca + dc)x + (cb + d^2)} \] 4. **Set \( f(f(x)) = x \)**: For \( f(f(x)) \) to equal \( x \), we need: \[ \frac{(a^2 + bc)x + (ab + bd)}{(ca + dc)x + (cb + d^2)} = x \] 5. **Cross-multiply**: \[ (a^2 + bc)x + (ab + bd) = x((ca + dc)x + (cb + d^2)) \] This expands to: \[ (a^2 + bc)x + (ab + bd) = (ca + dc)x^2 + (cb + d^2)x \] 6. **Rearrange the equation**: \[ 0 = (ca + dc)x^2 + (cb + d^2 - (a^2 + bc))x - (ab + bd) \] 7. **Compare coefficients**: For the equation to hold for all \( x \), the coefficients of \( x^2 \), \( x \), and the constant term must all be zero: - Coefficient of \( x^2 \): \( ca + dc = 0 \) - Coefficient of \( x \): \( cb + d^2 - (a^2 + bc) = 0 \) - Constant term: \( ab + bd = 0 \) 8. **Solve the system of equations**: From \( ca + dc = 0 \): \[ c = -\frac{d}{a} \quad \text{(if } a \neq 0\text{)} \] From \( ab + bd = 0 \): \[ b(a + d) = 0 \] This gives us two cases: - \( b = 0 \) - \( a + d = 0 \) (which implies \( d = -a \)) 9. **Final conditions**: The conditions derived are: \[ ac + cd = 0, \quad a^2 = d^2, \quad ab + bd = 0 \] Thus, we conclude that: \[ A = -D \quad \text{or} \quad D = -A \]
Promotional Banner

Similar Questions

Explore conceptually related problems

y=f(x)=(ax-b)/(cx-a) then f(y)=?

Let f(x)=(1)/(1-x)."Then (fp (fof)) (x)"

Let f(x) = (ax +b)/(cx + d) (da-cb ne 0, c ne0) then f(x) has

If f(x)=(x)/(sqrt(1-x^(2))) then (fof)(x)=

If f(x) = (x)/(sqrt(1+ x^(2))) , then (fof) (x) =