Home
Class 12
MATHS
Range of f(x)=log(sqrt10) (sqrt5 (2 sin ...

Range of `f(x)=log_(sqrt10) (sqrt5 (2 sin x+cos x)+5)` is :

A

[0,1]

B

[0,3]

C

`(-oo,1/3]`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To find the range of the function \( f(x) = \log_{\sqrt{10}} \left( \sqrt{5} (2 \sin x + \cos x) + 5 \right) \), we will follow these steps: ### Step 1: Determine the range of \( 2 \sin x + \cos x \) The expression \( 2 \sin x + \cos x \) can be analyzed using the formula for the range of a linear combination of sine and cosine functions. The range of \( a \sin x + b \cos x \) is given by \( [-\sqrt{a^2 + b^2}, \sqrt{a^2 + b^2}] \). Here, \( a = 2 \) and \( b = 1 \). \[ \text{Range of } 2 \sin x + \cos x = \left[-\sqrt{2^2 + 1^2}, \sqrt{2^2 + 1^2}\right] = \left[-\sqrt{5}, \sqrt{5}\right] \] ### Step 2: Transform the range to \( \sqrt{5} (2 \sin x + \cos x) + 5 \) Next, we will transform the range we found in step 1 by multiplying by \( \sqrt{5} \) and then adding \( 5 \). 1. Multiply the range \( [-\sqrt{5}, \sqrt{5}] \) by \( \sqrt{5} \): \[ \text{New range} = \left[-\sqrt{5} \cdot \sqrt{5}, \sqrt{5} \cdot \sqrt{5}\right] = [-5, 5] \] 2. Now add \( 5 \) to the entire range: \[ \text{Final range} = [-5 + 5, 5 + 5] = [0, 10] \] ### Step 3: Apply the logarithm function Now we need to consider the function \( f(x) = \log_{\sqrt{10}}(y) \) where \( y \) is in the range \( [0, 10] \). - The logarithm function \( \log_{\sqrt{10}}(y) \) is defined for \( y > 0 \). - The minimum value of \( y \) is \( 0 \) (but not included, since log is undefined at 0). - The maximum value of \( y \) is \( 10 \). ### Step 4: Evaluate the logarithm at the endpoints 1. As \( y \) approaches \( 0 \), \( \log_{\sqrt{10}}(y) \) approaches \( -\infty \). 2. Evaluate \( \log_{\sqrt{10}}(10) \): \[ \log_{\sqrt{10}}(10) = \frac{\log_{10}(10)}{\log_{10}(\sqrt{10})} = \frac{1}{\frac{1}{2}} = 2 \] ### Conclusion: Determine the range of \( f(x) \) Thus, the range of \( f(x) \) is: \[ (-\infty, 2) \] ### Final Answer The range of \( f(x) = \log_{\sqrt{10}} \left( \sqrt{5} (2 \sin x + \cos x) + 5 \right) \) is \( (-\infty, 2) \). ---
Promotional Banner

Similar Questions

Explore conceptually related problems

The range of f(x)=log_(sqrt(5))(sqrt(2)(sin x-cos x)+3) is

the range of log_(sqrt(3))[sqrt(2)(sin x-cos x)+3] is

Find the range of the following function,y=log_(sqrt(7))(sqrt(2)(sin x-cos x)+5)

Range of f(x)=sqrt(sin(log_(7)(cos(sin x)))) is:

Find the range of f(x)=log_(2)((sin x-cos x+3sqrt(2))/(sqrt(2)))

If alpha le log _(sqrt5) [sqrt2( sin x - cos x) + 3] le beta then

The function f(x)=log_(10)(x+sqrt(x^(2))+1) is

Range of the function f(x)=log_(2)((sin x+cos x+3sqrt(2))/(sqrt(2))) is given by

Range of the function f(x)=log _(sqrt2)(2-log_(2)16 sin ^(2)x +1) is:

Number of integers in the range of the function f(x)=log_(sqrt(2))(sqrt(x-4)+sqrt(6-x)) is