Home
Class 12
MATHS
Let f(k)=k/2009 and g(k)=(f^4(k))/((1-f(...

Let `f(k)=k/2009` and `g(k)=(f^4(k))/((1-f(k))^4+(f(k))^4)` then the sum `sum_(k=0)^2009g(k)` is equal:

A

2009

B

2008

C

1005

D

1004

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(k)=(k)/(2009) and g(k)=(f^(4)(k))/((1-f(k))^(4)+(f(k))^(4)) then the sum sum_(k=0)^(2009)g(k) is equal:

The sum sum_(k=1)^(20) k (1)/(2^(k)) is equal to

The sum sum_(k=1)^(10)k.k! equals.

The sum sum_(k=1)^(n)k(k^(2)+k+1) is equal to

The Sum sum_(K=1)^(20)K(1)/(2^(K)) is equal to.

Find the sum sum_(k=0)^n ("^nC_k)/(k+1)

The sum sum_(k=1)^(100)(k)/(k^(4)+k^(2)+1) is equal to

Let f(n)=(k=1)?^(n)k^(2)(nC_(k))^(2) then the value of f(5) equals

For each positive integer n, let f(n+1)=n(-1)^(n+1)-2f(n) and f(1)=(2010)* Then sum_(k=1)^(2009)f(K) is equal to 335(b)336(c)331(d)333