Home
Class 12
MATHS
Let g: R to R be given by g(x)=3 +4x I...

Let `g: R to R` be given by g(x)=3 +4x
If `g^(n) (x)=gogo ....og (x)" then "g^(-n)=("where "g^(-n) (x))" denotes inverse of "g^(n) (x))`

A

`(4^(n)-1) +4^(n)x`

B

`(x+1) 4^(-n)-1`

C

`(x+1) 4^(n)-1`

D

`(4^(-n)-1)x+4^(n)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the inverse of the function \( g^n(x) \), where \( g(x) = 3 + 4x \). We will derive \( g^n(x) \) first and then find its inverse \( g^{-n}(x) \). ### Step-by-Step Solution: 1. **Define the function \( g(x) \)**: \[ g(x) = 3 + 4x \] 2. **Calculate \( g^2(x) \)**: \[ g^2(x) = g(g(x)) = g(3 + 4x) \] Substitute \( 3 + 4x \) into \( g(x) \): \[ g(3 + 4x) = 3 + 4(3 + 4x) = 3 + 12 + 16x = 15 + 16x \] 3. **Calculate \( g^3(x) \)**: \[ g^3(x) = g(g^2(x)) = g(15 + 16x) \] Substitute \( 15 + 16x \) into \( g(x) \): \[ g(15 + 16x) = 3 + 4(15 + 16x) = 3 + 60 + 64x = 63 + 64x \] 4. **Generalize \( g^n(x) \)**: From the pattern observed, we can derive a general formula for \( g^n(x) \): \[ g^n(x) = 3 \cdot (4^{n-1}) + 4^n x \] This can be expressed as: \[ g^n(x) = 3 \cdot \frac{4^n - 1}{4 - 1} + 4^n x = \frac{3(4^n - 1)}{3} + 4^n x = 3 + 4^n x \] 5. **Find the inverse \( g^{-n}(x) \)**: To find the inverse, we set \( y = g^n(x) \): \[ y = 3 + 4^n x \] Rearranging for \( x \): \[ y - 3 = 4^n x \implies x = \frac{y - 3}{4^n} \] Thus, the inverse function is: \[ g^{-n}(x) = \frac{x - 3}{4^n} \] ### Final Result: The inverse of \( g^n(x) \) is: \[ g^{-n}(x) = \frac{x - 3}{4^n} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Let g : R to R be given by g(x) = 3 + 4x . If g^n(x) = gogo…og(x), show that f^n(x)= (4^n -1) + 4^nx is g^(-n)(x) denotes the inverse of g^n(g) .

Let g:R to R be given by g (x) =3+ 4x if g ^(n)(x) = gogogo……og (x) n times. Then inverse of g ^(n)(x) is equal to :

Let g:R rarr R be given by g(x)=3+4x If g(x)=gogo.....G(x), and g(x)=A+Bx then A and B are

Let f : R to R and g : R to R be given by f (x) = x^(2) and g(x) =x ^(3) +1, then (fog) (x)

" Let "f:R rarr R" be given by "f(x)=3+4x" and "g(x)=(f" of of"----n" times) "(x)" then find the range and domain of "g(x)"

Let f: R to R be any function. Define g : R to R by g(x) = | f(x), AA x . Then, g is