Home
Class 12
MATHS
The period of the function f(x)=4sin^4((...

The period of the function `f(x)=4sin^4((4x-3pi)/(6pi^2))+2cos((4x-3pi)/(3pi^2))` is

A

`(3pi^(2))/(4)`

B

`(3pi^(3))/(4)`

C

`(4pi^(2))/(3)`

D

`(4pi^(3))/(3)`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

The period of the function f(x)=4sin^(4)((4x-3 pi)/(6 pi^(2)))+2cos((4x-3 pi)/(3 pi^(2)))

The period of the function f(x)=4sin^(4)((4x-3 pi)/(6 pi^(2)))+2cos((4x-3 pi)/(3 pi^(2))) is k pi^(3) then the value of [1/k] (where [ ] denote the G.I.F )

The fundamental period of the function f(x)=4cos^(4)((x-pi)/(4 pi^(2)))-2cos((x-pi)/(2 pi^(2))) is equal to:

The period of the function f(x)=sin((2x+3)/(6pi)) , is

Find the period of the function f(x) = sin((pi x)/3) + cos ((pi x)/2) .

Find the period of the function f(x)=3sin((pi x)/(3))+4cos((pi x)/(4))

The period of the function f(x)=3+(4)/(7)sin((2x-3)/(4)) is (i) pi(ii)2 pi(iii)4 pi(iv)3 pi

STATEMENT-1: The values of f(x)=3sin(sqrt((pi^(2))/(16)-x^(2)) lie in the interval [0,(3)/(sqrt(3))]. and STATEMENT-2The domain of definition of the function f(x)=3sin(sqrt((pi^(2))/(16)-x^(2)) is [-(pi)/(4),(pi)/(4)]

Show that function f(x)=sin(2x+(pi)/(4)) is decreasing on ((3 pi)/(8),(5 pi)/(8))

The period of f(x)=(sin(pi x))/(2)+2(cos(pi x))/(3)-(tan(pi x))/(4) is