Home
Class 12
MATHS
The range of f(x)=(2+x-[x])/(1-x+[x]).wh...

The range of `f(x)=(2+x-[x])/(1-x+[x])`.where [ ] denotes the greatest integer function is

A

[0,1)

B

`[2,oo)`

C

`[0,1) cup (1,2]`

D

`R^(+)`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

The range of f(x)=(2+x-[x])/(1-x+[x]). where [1] denotes the greatest integer function is

If f(x)=(x-[x])/(1-[x]+x), where [.] denotes the greatest integer function,then f(x)in:

Find the range of f(x)=(x-[x])/(1-[x]+x'), where [] represents the greatest integer function.

Domain (D) and range (R ) of f(x)=sin^(-1)(cos^(-1)[x]) where [ ] denotes the greatest integer function is

Let f(x)=(-1)^([x]) where [.] denotes the greatest integer function),then

f(x)=1/sqrt([x]^(2)-[x]-6) , where [*] denotes the greatest integer function.

Domain (D) and range (R) of f(x)=sin^(-1)(cos^(-1)[x]), where [.] denotes the greatest integer function,is

If f(x)=[2x], where [.] denotes the greatest integer function,then

If f(x)=([x])/(|x|),x ne 0 where [.] denotes the greatest integer function, then f'(1) is

Domain of f(x)=sqrt([x]-1+x^(2)); where [.] denotes the greatest integer function,is