Home
Class 12
MATHS
The range of the function f(x)=3|sin x|-...

The range of the function `f(x)=3|sin x|-2|cos x|` is :

A

`[-2 sqrt13]`

B

[-2,3]

C

`[3,sqrt13]`

D

`[-3,2]`

Text Solution

AI Generated Solution

The correct Answer is:
To find the range of the function \( f(x) = 3|\sin x| - 2|\cos x| \), we will analyze the function step by step. ### Step 1: Understand the behavior of the absolute values The function consists of absolute values of sine and cosine functions. The values of \( |\sin x| \) and \( |\cos x| \) both range from 0 to 1. Therefore, we can express the function as: \[ f(x) = 3|\sin x| - 2|\cos x| \] where \( |\sin x| \) can take values from 0 to 1 and \( |\cos x| \) can also take values from 0 to 1. ### Step 2: Analyze the critical points To find the maximum and minimum values of \( f(x) \), we can analyze the function at the critical points where \( |\sin x| \) and \( |\cos x| \) achieve their extreme values. 1. **When \( |\sin x| = 1 \) and \( |\cos x| = 0 \)**: \[ f(x) = 3(1) - 2(0) = 3 \] 2. **When \( |\sin x| = 0 \) and \( |\cos x| = 1 \)**: \[ f(x) = 3(0) - 2(1) = -2 \] ### Step 3: Consider intermediate values Next, we need to consider the cases when \( |\sin x| \) and \( |\cos x| \) take values between 0 and 1. Since both functions are periodic, we can analyze the function over one period, say \( x \in [0, 2\pi] \). ### Step 4: Find the maximum and minimum values From the calculations above: - The maximum value of \( f(x) \) occurs when \( |\sin x| = 1 \) (which happens at \( x = \frac{\pi}{2} + k\pi \)), giving \( f(x) = 3 \). - The minimum value of \( f(x) \) occurs when \( |\cos x| = 1 \) (which happens at \( x = k\pi \)), giving \( f(x) = -2 \). ### Step 5: Conclusion Thus, the range of the function \( f(x) = 3|\sin x| - 2|\cos x| \) is: \[ [-2, 3] \] ### Final Answer The range of the function \( f(x) = 3|\sin x| - 2|\cos x| \) is \([-2, 3]\). ---
Promotional Banner

Similar Questions

Explore conceptually related problems

The range of the function f(x)=2|sin x|-3|cos x| is

If [sin x]+[2cos x]=-3 then the range of the function f(x)=sin x+cos x is

Range of function f(x)=3|sin x|-4|cos x|

The period of the function f(x)=|sin 3x|+| cos 3x| , is

If [2cos x]+[sin x]=-3, then the range of the function,f(x)=sin x+sqrt(3)cos x in [0,2 pi] (where [1 denotes greatest integer function)

The domain of the function f(x)=max{sin x, cos x} is (-infty, infty) . The range of f(x) is

If range of the function f(x)=(3sin x-1)(3sin x-2) is [a,b] , then a+ b=

The range of the function f(x) = (1)/(2-sin 3x) is

The range of the function f(x)=(1)/(sqrt(4+3cos x)) is