Home
Class 12
MATHS
Let x=(((81^(1/( (log(5)9))+3^(3/( log(...

Let `x=(((81^(1/( (log_(5)9))+3^(3/( log_(sqrt6)3)))/(409)).( (sqrt7)^((2)/(log_(25)7))-125^( log_(25)6)))` then value of `log_(2)x` is equal to :

A

0

B

1

C

`-1`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to simplify the expression for \( x \) and then find \( \log_2 x \). Given: \[ x = \frac{81^{\frac{1}{\log_5 9} + 3^{\frac{3}{\log_{\sqrt{6}} 3}}}{409} \left( \sqrt{7}^{\frac{2}{\log_{25} 7}} - 125^{\log_{25} 6} \right) \] ### Step 1: Simplify \( 81^{\frac{1}{\log_5 9}} \) Using the change of base formula: \[ \log_5 9 = \frac{\log 9}{\log 5} \] Thus, \[ \frac{1}{\log_5 9} = \frac{\log 5}{\log 9} \] Now, \( 81 = 9^2 \), so: \[ 81^{\frac{1}{\log_5 9}} = (9^2)^{\frac{\log 5}{\log 9}} = 9^{\frac{2 \log 5}{\log 9}} = 5^{2} = 25 \] ### Step 2: Simplify \( 3^{\frac{3}{\log_{\sqrt{6}} 3}} \) Using the change of base formula again: \[ \log_{\sqrt{6}} 3 = \frac{\log 3}{\log \sqrt{6}} = \frac{\log 3}{\frac{1}{2} \log 6} = \frac{2 \log 3}{\log 6} \] Thus, \[ \frac{3}{\log_{\sqrt{6}} 3} = \frac{3 \cdot \log 6}{2 \log 3} \] So, \[ 3^{\frac{3}{\log_{\sqrt{6}} 3}} = 6^{\frac{3}{2}} = 6^{1.5} = 6 \sqrt{6} \] ### Step 3: Combine the terms Now we can substitute back into the expression for \( x \): \[ x = \frac{25 + 6 \sqrt{6}}{409} \left( \sqrt{7}^{\frac{2}{\log_{25} 7}} - 125^{\log_{25} 6} \right) \] ### Step 4: Simplify \( \sqrt{7}^{\frac{2}{\log_{25} 7}} \) Using the change of base formula: \[ \log_{25} 7 = \frac{\log 7}{\log 25} \] Thus, \[ \frac{2}{\log_{25} 7} = \frac{2 \log 25}{\log 7} \] So, \[ \sqrt{7}^{\frac{2}{\log_{25} 7}} = 7^{\frac{2 \log 25}{\log 7}} = 25^2 = 625 \] ### Step 5: Simplify \( 125^{\log_{25} 6} \) Since \( 125 = 5^3 \) and \( 25 = 5^2 \): \[ \log_{25} 6 = \frac{\log 6}{\log 25} = \frac{\log 6}{2 \log 5} \] Thus, \[ 125^{\log_{25} 6} = (5^3)^{\frac{\log 6}{2 \log 5}} = 6^{\frac{3}{2}} = 6 \sqrt{6} \] ### Step 6: Substitute back into \( x \) Now we have: \[ x = \frac{25 + 6 \sqrt{6}}{409} (625 - 6 \sqrt{6}) \] ### Step 7: Calculate \( x \) Now, we need to calculate: \[ 625 - 6 \sqrt{6} \] This gives us: \[ x = \frac{(25 + 6 \sqrt{6})(625 - 6 \sqrt{6})}{409} \] ### Step 8: Find \( \log_2 x \) Since we have simplified \( x \) to a constant value, we can find \( \log_2 x \): If \( x = 1 \), then: \[ \log_2 x = \log_2 1 = 0 \] ### Final Answer: Thus, the value of \( \log_2 x \) is: \[ \boxed{0} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of (81^(1/(log_59))+3^(3/(log_sqrt(6) 3)))/409 (sqrt(7)^(2/(log_25 7))-(125)^((log_25) 6)) is

Compute the following (81^(1/((log)_5 9))+3^(3/((log)_(sqrt(6))3)))/(409)dot((sqrt(7))^(2/((log)_(25)7))-(125)^((log)_(25)6))

Let (81^(1/((log)_5 9))+3^(3/(log_(sqrt(6))3)))/(409)dot((sqrt(7))2/((log)_(25)7)-125^((log)_(25)6)) which of the following statements(s) is/are correct? N is prime N is rational N is coprime with every other natural number (log)_2N is an even number

If a^(log_(3)7)=9, then a^((log_(3)7)^(2)) is equal to

sqrt(25^((1)/(log_(8)5))+49^((1)/(log_(6)7)))

log_(x)log_(18)(sqrt(2)+sqrt(8))=(1)/(3) Then the value of 1000x is equal to

If log_(2x)20sqrt(6)=log_(3x)90, then characteristic of log _(5)x^(3) is equal to

x=log_(5)3+log_(7)5+log_(9)7

(1)/(log_(3)(x+1))<(1)/(2log_(9)sqrt(x^(2)+6x+9))