Home
Class 12
MATHS
If T(1) is the period of the function f(...

If `T_(1)` is the period of the function `f(x)=e^(3x-[x]) and T_(2)` is the period of the function `g(x)=e^(3-[x])``([*]` denotes the greatest integer function ), then

A

`T_(1)=T_(2)`

B

`T_(1)=(T_(2))/(3)`

C

`T_(1)=3T_(2)`

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

If T_(1) is the period of the function f(x)=e^(3(x-[x])) and T_(2) is the period of the function g(x)=e^(3x-[3x]) ([*] denotes the greatest integer function ), then

The period of the function f(x)=sin(x+3-[x+3]) where [] denotes the greatest integer function

If f(x)=[sin^(2) x] ([.] denotes the greatest integer function), then

Let f(x)=(-1)^([x]) where [.] denotes the greatest integer function),then

f(x)=log(x-[x]), which [,] denotes the greatest integer function.

If f(x)=[2x], where [.] denotes the greatest integer function,then

If the period of the function f(x)=tan(sqrt([k]x)), where [.] denotes the greatest integer function is pi, then

Find the domain of the function f(x)=log_(e)(x-[x]) , where [.] denotes the greatest integer function.

The function,f(x)=[|x|]-|[x]| where [] denotes greatest integer function:

Find the period of the function f(x) = tan""(pi)/(2) [x] . Where [*] denotes greatest integer function