Home
Class 12
MATHS
If f(x)=(4^(x))/(4^(x)+2)," then "f(1/(9...

If `f(x)=(4^(x))/(4^(x)+2)," then "f(1/(97))+f((2)/(97))+...+f((96)/(97))` is equal to:

A

1

B

48

C

`-48`

D

`-1`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expression \( f\left(\frac{1}{97}\right) + f\left(\frac{2}{97}\right) + \ldots + f\left(\frac{96}{97}\right) \) where \( f(x) = \frac{4^x}{4^x + 2} \). ### Step 1: Find \( f(-x) \) We start by calculating \( f(-x) \): \[ f(-x) = \frac{4^{-x}}{4^{-x} + 2} \] This can be rewritten as: \[ f(-x) = \frac{\frac{1}{4^x}}{\frac{1}{4^x} + 2} = \frac{1}{1 + 2 \cdot 4^x} \] ### Step 2: Find \( f(x) + f(-x) \) Next, we will find the sum \( f(x) + f(-x) \): \[ f(x) + f(-x) = \frac{4^x}{4^x + 2} + \frac{1}{1 + 2 \cdot 4^x} \] To combine these fractions, we need a common denominator: \[ = \frac{4^x(1 + 2 \cdot 4^x) + (4^x + 2)}{(4^x + 2)(1 + 2 \cdot 4^x)} \] Expanding the numerator: \[ = \frac{4^x + 2 \cdot 4^{2x} + 4^x + 2}{(4^x + 2)(1 + 2 \cdot 4^x)} = \frac{2 \cdot 4^x + 2 \cdot 4^{2x} + 2}{(4^x + 2)(1 + 2 \cdot 4^x)} \] Factoring out 2 from the numerator: \[ = \frac{2(4^{2x} + 4^x + 1)}{(4^x + 2)(1 + 2 \cdot 4^x)} \] ### Step 3: Simplifying \( f(x) + f(-x) \) Notice that \( 4^{2x} + 4^x + 1 \) can be factored as \( (4^x + 1)^2 \): \[ = \frac{2(4^x + 1)^2}{(4^x + 2)(1 + 2 \cdot 4^x)} \] This shows that \( f(x) + f(-x) = 1 \). ### Step 4: Evaluate the sum Now, we can use the property we found: \[ f\left(\frac{k}{97}\right) + f\left(\frac{97-k}{97}\right) = 1 \] for \( k = 1, 2, \ldots, 48 \). The pairs are: - \( f\left(\frac{1}{97}\right) + f\left(\frac{96}{97}\right) = 1 \) - \( f\left(\frac{2}{97}\right) + f\left(\frac{95}{97}\right) = 1 \) - ... - \( f\left(\frac{48}{97}\right) + f\left(\frac{49}{97}\right) = 1 \) ### Step 5: Count the pairs There are 48 pairs in total, and each pair sums to 1: \[ \text{Total sum} = 48 \cdot 1 = 48 \] ### Final Answer Thus, the value of \( f\left(\frac{1}{97}\right) + f\left(\frac{2}{97}\right) + \ldots + f\left(\frac{96}{97}\right) \) is: \[ \boxed{48} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

f(x)=(4^(x))/(4^(x)+2), then f(x)+f(1-x)

If f(x)=(4^(x))/(4^(x)+2) then f(x)+f(1-x) is

If f(x)=(4^(x))/(4^(x)+2), then f(x)+f(1-x) is equal to

If f(x)=(4^(x))/(4^(x)+2) then f(x)+f(1-x) is equal to

If f(x)=(4^(x))/(4^(x)+2) , then show that f(x)+f(1-x)=1

If f (x)=4x -x ^(2), then f (a+1) -f (a-1) =

If f(x)=(x-4)/(2sqrt(x)), then f'(4) is equal to

If f(x) =(x-4)/(2sqrt(x)) , then f^(')(1) is equal to

Let f(x)=(4^(x))/(4^(x)+2), and given that f(x)+f(1-x)=1 then f((1)/(1997))+f((2)/(1997))+f((3)/(1997))+....+f((1996)/(1997))