Home
Class 12
MATHS
Given log(a) x=alpha, log (b) x=beta, lo...

Given `log_(a) x=alpha, log _(b) x=beta, log_(c)x =gamma & log_(d) x=delta(x ne 1), a,b,c,d in R^(+)-{1}" then "log_(abcd)x` then the value equal to:

A

`(1)/(alphabeta gamma delta)`

B

`(1)/(alpha)+(1)/(beta)+(1)/(gamma)+(1)/(delta)`

C

`(1)/((1)/(alpha)+(1)/(beta)+(1)/(gamma)+(1)/(delta))`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given logarithmic equations: 1. \( \log_a x = \alpha \) 2. \( \log_b x = \beta \) 3. \( \log_c x = \gamma \) 4. \( \log_d x = \delta \) We need to find the value of \( \log_{abcd} x \). ### Step 1: Express the logarithms in terms of their reciprocals Using the property of logarithms that states \( \log_a b = \frac{1}{\log_b a} \), we can express the logarithms in terms of their reciprocals: \[ \log_a x = \alpha \implies \log_x a = \frac{1}{\alpha} \] \[ \log_b x = \beta \implies \log_x b = \frac{1}{\beta} \] \[ \log_c x = \gamma \implies \log_x c = \frac{1}{\gamma} \] \[ \log_d x = \delta \implies \log_x d = \frac{1}{\delta} \] ### Step 2: Add the logarithmic values Now, we can add these four logarithmic values: \[ \log_x a + \log_x b + \log_x c + \log_x d = \frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma} + \frac{1}{\delta} \] ### Step 3: Use the property of logarithms Using the property of logarithms that states \( \log_a b + \log_a c = \log_a (bc) \), we can combine the left side: \[ \log_x (abcd) = \frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma} + \frac{1}{\delta} \] ### Step 4: Change the base Now, we want to express \( \log_{abcd} x \). We can use the change of base formula: \[ \log_{abcd} x = \frac{1}{\log_x (abcd)} \] Substituting the expression we found in Step 3: \[ \log_{abcd} x = \frac{1}{\frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma} + \frac{1}{\delta}} \] ### Final Result Thus, the value of \( \log_{abcd} x \) is: \[ \log_{abcd} x = \frac{1}{\frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma} + \frac{1}{\delta}} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If log_ax=alpha,log_bx=beta,log_c x=gamma and log_d x=delta ,xne1 and a,b,c, dne1 ,then log_(abcd) x equals

if log_(a)x=(1)/(alpha),log_(b)x=(1)/(beta),log_(c)x=y then log_(abc)x

Given that log_(a)x=(1)/(alpha),log_(b)x=(1)/(beta) and log_(c)x=(1)/(gamma) Then find log_(abc)x

Given that log_(p)x=alpha and log_(q)x=beta, then value of log_((p)/(q))x equals

If log_(a)x,log_(b)x,log_(c)x are in A.P then c^(2)=

(1+log_(c)a)log_(a)x*log_(b)c=log_(b)x log_(a)x

If log_(a)x,log_(b)x,log_(c)x are in AP, where x!=1, then

If "log"_(a)x, "log"_(b) x, "log"_(c) x are in A.P., where x ne 1, "then" c^(2) =0

If a,b,c are in G.P,then log _(a)x,log_(b)x,log_(c)x are in