Home
Class 12
MATHS
If f(x) = log ((1+x)/(1-x)), where -1 lt...

If `f(x) = log ((1+x)/(1-x))`, where `-1 lt x lt 1` then `f((3x+x^(2))/(1+3x^(2))) - f((2x)/(1+x^(2)))` is equal to

A

`[f(x)]^(3)`

B

`[f(x)]^(2)`

C

`-f(x)`

D

f(x)

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x) = log ((1+x)/(1-x)) , then f((2x)/(1+x^(2))) is equal to

If f(x)=log((1+x)/(1-x)) , "then f "((2x)/(1+x^(2))) is equal to

If f(x) = log_(e) ((1-x)/(1+x)) , then f((2x)/(1 + x^(2))) is equal to :

If f(x)=log_(e)((1-x)/(1+x)),|x| lt 1, " then " f((2x)/(1+x^(2))) is equal to

If f(x)=log((1+x)/(1-x)) and g(x)=((3x+x^(3))/(1+3x^(2))) then f(g(x)) is equal to f(3x)(b)quad {f(x)}^(3) (c) 3f(x)(d)-f(x)

If f(x) = 3x-1 when x geq 1 and f(x) = -x when x lt 1 then value of f(-2) is

If f(x) = 3x-1 when x geq 1 and f(x) = -x when x lt 1 then value of f(-2) is