Home
Class 12
MATHS
If f(x)=-(x|x|)/(1+x^(2))" then "f^(-1)x...

If `f(x)=-(x|x|)/(1+x^(2))" then "f^(-1)x` equals :

A

`sqrt((|x|)/(1-|x|)`

B

`(sgn (-x)) sqrt((|x|)/(1-|x|)`

C

`-sqrt((x)/(1-x)`

D

`(sgn (x)) sqrt((|x|)/(1+|x|)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the inverse of the function \( f(x) = -\frac{x |x|}{1 + x^2} \), we will analyze the function for two cases based on the sign of \( x \). ### Step 1: Analyze the function for \( x \geq 0 \) For \( x \geq 0 \), we have \( |x| = x \). Therefore, the function simplifies to: \[ f(x) = -\frac{x^2}{1 + x^2} \] Let \( y = f(x) \): \[ y = -\frac{x^2}{1 + x^2} \] Rearranging gives: \[ y(1 + x^2) = -x^2 \] \[ y + yx^2 = -x^2 \] \[ yx^2 + x^2 + y = 0 \] Factoring out \( x^2 \): \[ x^2(y + 1) + y = 0 \] Solving for \( x^2 \): \[ x^2 = -\frac{y}{y + 1} \] Taking the square root: \[ x = \sqrt{-\frac{y}{y + 1}} \] Thus, for \( x \geq 0 \): \[ f^{-1}(y) = \sqrt{-\frac{y}{y + 1}} \quad \text{(valid for } y < 0\text{)} \] ### Step 2: Analyze the function for \( x < 0 \) For \( x < 0 \), we have \( |x| = -x \). Therefore, the function simplifies to: \[ f(x) = -\frac{-x^2}{1 + x^2} = \frac{x^2}{1 + x^2} \] Let \( y = f(x) \): \[ y = \frac{x^2}{1 + x^2} \] Rearranging gives: \[ y(1 + x^2) = x^2 \] \[ y + yx^2 = x^2 \] \[ yx^2 - x^2 + y = 0 \] Factoring out \( x^2 \): \[ x^2(y - 1) + y = 0 \] Solving for \( x^2 \): \[ x^2 = -\frac{y}{y - 1} \] Taking the square root and considering \( x < 0 \): \[ x = -\sqrt{-\frac{y}{y - 1}} \] Thus, for \( x < 0 \): \[ f^{-1}(y) = -\sqrt{-\frac{y}{y - 1}} \quad \text{(valid for } y \geq 0\text{)} \] ### Final Result Combining both cases, we have: \[ f^{-1}(y) = \begin{cases} \sqrt{-\frac{y}{y + 1}} & \text{if } y < 0 \\ -\sqrt{-\frac{y}{y - 1}} & \text{if } y \geq 0 \end{cases} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If f:R rarr(-1,1) is defined by f(x)=-(x|x|)/(1+x^(2)), then f^(-1)(x) equals sqrt((|x|)/(1-|x|)(b)-sgn(x)sqrt((|x|)/(1-|x|))-sqrt((x)/(1-x))(d)) none of these

" If f(x)=(x)/(1+x) then f^(-1)(x) is equal to

If f : R - {1} rarr R, f(x) = (x-3)/(x+1) , then f^(-1) (x) equals

If f(x)=x^(2)-x^(-2) then f((1)/(x)) is equal to

If f(x)=x^(2)-x^(-2) then f((1)/(x)) is equal to

If f(x) =(x-4)/(2sqrt(x)) , then f^(')(1) is equal to

Let f(x)=(x^(2)-x)/(x^(2)+2x) then d(f^(-1)x)/(dx) is equal to

If f : [1, oo) rarr [2, oo) is given by f(x) = x + (1)/(x) then f^(-1) (x) equals:

If f(x)=(4^(x))/(4^(x)+2) then f(x)+f(1-x) is equal to

If f(x)=cot^(-1)((x^(x)-x^(-x))/(2)) then f'(1) equals