Home
Class 12
MATHS
The domain of function f (x) = log ([x+(...

The domain of function `f (x) = log _([x+(1)/(2)])(2x ^(2) + x-1), ` where `[.]` denotes the greatest integer function is :

A

`x in [3/2,2] cup (2,3) cup (3,oo)`

B

`x in [3/2, oo)`

C

`x in [1/2, oo)`

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

The domain of the function f(x)=log_([x+(1)/(2)])|x^(2)-x-6|* where [] denotes the greatest integer function,is

If f(x)=[2x], where [.] denotes the greatest integer function,then

The domain of the function f(x)=(log_(4)(5-[x-1]-[x]^(2)))/(x^(2)+x-2) is (where [x] denotes greatest integer function)

f(x)=log(x-[x]), which [,] denotes the greatest integer function.

f(x)=1/sqrt([x]^(2)-[x]-6) , where [*] denotes the greatest integer function.

The range of the function f(x)=[log_((2)/(3))|(x^(2)-1)/(x^(2)+1)|] where [-1 denotes the greatest integer function is

f(x)=sin^(-1)[log_(2)((x^(2))/(2))] where [.] denotes the greatest integer function.

The domain of the function f(x)=log_(3)log_(1//3)(x^(2)+10x+25)+(1)/([x]+5) (where [.] denotes the greatest integer function) is

The domain of f(x)=log_(x-(1)/(2))(x^(2)-2x-3) wherell 20. denotes greatest interger function is

The function f(x)=[x^(2)]+[-x]^(2) , where [.] denotes the greatest integer function, is