Home
Class 12
MATHS
The function f(x)=sqrt(cos(sinx))+sin^-1...

The function `f(x)=sqrt(cos(sinx))+sin^-1((1+x^2)/(2x))` is defined for :

A

`x in {-1,1}`

B

`x in [-1,1]`

C

` x in R`

D

` x in (-1,1)`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

The function f(x)=sqrt(cos(sin x))+sin^(-1)((1+x^(2))/(2x)) is defined for:

The domain of the function f(x)=sqrt(cos^(-1)((1-|x|)/(2))) is

find the domain and range of f(x)=sqrt(cos(sin x))+sin^(-1)((1+x^(2))/(2x))

Domain of the function f(x)=sqrt(cos(sin x))+sin(x^(2)-1) is [-1,1][-2,2]c*[-pi,sqrt(2)]uu[sqrt(2),pi][-sqrt(2),-sqrt(2)]

Find the domain of the following functions: (i) f(x) = (1)/(sqrt(|x| -x)) (ii) f(x) = sqrt(cos (sin x)) + sin^(-1) ((1 + x^(2))/(2x)) (iii) (1)/(log_(10) (1-x)) + sqrt(x + 2)

The domain of the function f(x)=sqrt(sin^(-1)(log_(2)x)) is

The domain of definition of function f(x)=sqrt(cos^(-1)x-2sin^(-1)x) is equal to

f(2)(sqrt(1-cos x))^(2)=(sin x)^(2)